Results in Mathematics

, Volume 72, Issue 3, pp 1239–1255 | Cite as

A Characterization of Nonuniform Multiwavelets Using Dimension Function

  • Nadya A. S. Atlouba
  • Shiva Mittal
  • Niraj K. Shukla


In this article, we present a characterization of nonuniform multiwavelets associated to a nonuniform multiresolution analysis (NUMRA) having finite multiplicity in terms of its dimension function. This, in turn, improves the main result of Gabardo and Yu given in (J Math Anal Appl 323(2):798–817, 2006). The concept of NUMRA was introduced by Gabardo and Nashed in which the translation set is a spectrum that is no longer a group.


MRA with multiplicity D NUMRA spectral pairs multiwavelets multiscaling functions dimension function 

Mathematics Subject Classification

42C40 65T60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auscher, P.: Solution of two problems on wavelets. J. Geom. Anal. 5(2), 181–236 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Calogero, A., Garrigós, G.: A characterization of wavelet families arising from biorthogonal MRA’s of multiplicity \(d\). J. Geom. Anal. 11(2), 187–217 (2001)Google Scholar
  3. 3.
    Gabardo, J.-P., Nashed, M.Z.: Nonuniform multiresolution analyses and spectral pairs. J. Funct. Anal. 158(1), 209–241 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Gabardo, J.-P., Nashed, M.Z.: An analogue of Cohen’s condition for nonuniform multiresolution analyses, wavelets, multiwavelets, and their applications (San Diego, CA, 1997), pp. 41–61. Contemp. Math. 216, Amer. Math. Soc., Providence (1998)Google Scholar
  5. 5.
    Gabardo, J.-P., Yu, X.: Wavelets associated with nonuniform multiresolution analyses and one-dimensional spectral pairs. J. Math. Anal. Appl. 323(2), 798–817 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Gripenberg, G.: A necessary and sufficient condition for the existence of a father wavelet. Studia Math. 114(3), 207–226 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Hernández, E., Weiss, G.: A First Course on Wavelets. Studies in Advanced Mathematics, CRC Press, Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  8. 8.
    Mittal, S., Shukla, N.K.: Generalized nonuniform multiresolution analyses. Colloq. Math. (to be appear)Google Scholar
  9. 9.
    Mittal, S., Shukla, N.K., Atuloba, N.A.S.: Nonuniform multiresolution analyses with finite multiplicity (preprint)Google Scholar
  10. 10.
    Mittal, S., Shukla, N.K., Atlouba, N.A.S.: Nonuniform multiwavelet sets and multiscaling sets. Numer. Funct. Anal. Optim. 37(2), 253–276 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Shukla, N.K., Mittal, S.: Wavelets on the spectrum. Numer. Funct. Anal. Optim. 35(4), 461–486 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Wang, X.: The study of wavelets from the properties of their Fourier transforms. Thesis (Ph.D.)-Washington University in St. Louis (1995)Google Scholar
  13. 13.
    Yu, X.: Wavelet sets, integral self-affine tiles and nonuniform multiresolution analyses. Thesis (Ph.D.)–McMaster University (Canada) (2005)Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Nadya A. S. Atlouba
    • 1
  • Shiva Mittal
    • 2
  • Niraj K. Shukla
    • 3
  1. 1.Department of MathematicsSHIATS, Deemed to be UniversityAllahabadIndia
  2. 2.Department of MathematicsS.P.M. Govt. Degree CollegeAllahabadIndia
  3. 3.Discipline of MathematicsIndian Institute of Technology IndoreSimrol, IndoreIndia

Personalised recommendations