Results in Mathematics

, Volume 72, Issue 1–2, pp 105–124 | Cite as

Tangential Cauchy–Riemann Equations on Pseudoconvex Boundaries of Finite and Infinite Type in \(\mathbb {C}^2\)

  • Ly Kim Ha


In this paper, we will present what we think is a natural extension of the finite type condition in the sense of Range on pseudoconvex domains. This type condition generalizes the notion of finite type in the original theory as well as consists many cases of infinite type in the sense of Range. Following the integral representation by Henkin, we also provide \(L^p\) and “new” Hölder estimates for solutions of \(\bar{\partial }_b\)-equations on the boundaries of domains which emphasize the infinite type condition.


Pseudoconvex domains \(\bar{\partial }_b\)-operator integral representation \(\bar{\partial }_b\)-solutions range’s type Bochner–Martinelli–Koppelman operators 

Mathematics Subject Classification

Primary 32W10 Secondary 32F17 32T25 32V15 32T25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn, H., Cho, H.R.: Optimal Hölder and \(L^p\) estimates for \(\bar{\partial }_b\) on boundaries of convex domains of finite type. J. Math. Anal. Appl. 286(1), 281–294 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bruma, J., del Castillo, J.: Hölder and \(L^p\)-estimates for the \(\bar{\partial }\)-equation in some convex domains with real-analytic boundary. Math. Ann. 296(4), 527–539 (1984)CrossRefGoogle Scholar
  3. 3.
    Chen, S.C., Shaw, M.C.: Partial Differential Equations in Several Complex Variables, Studies in Advanced Mathematics, AMS/IP. American Mathematical Society, Providence (2001)CrossRefGoogle Scholar
  4. 4.
    Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie Groups. Ark. Mat. 13(1–2), 161–207 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Folland, G.B.: Real Analysis: Modern Techniques and Their Application, Pured and Applied Mathematics (New York), 2nd edn. Wiley, New York (1999)Google Scholar
  6. 6.
    Folland, G.B., Stein, E.M.: Estimates for the \(\bar{\partial }_b\) complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522 (1974)CrossRefzbMATHGoogle Scholar
  7. 7.
    Henkin, G.M.: Integral representations of functions holomorphic in strictly-pseudoconvex domains and some applications. Math. USSR Sb. 7(4), 597–616 (1969)CrossRefzbMATHGoogle Scholar
  8. 8.
    Henkin, G.M.: Integral representations of functions in strictly-pseudoconvex domains and applications to the \(\bar{\partial }\)-problem. Math. USSR Sb. 11, 273–281 (1970)CrossRefzbMATHGoogle Scholar
  9. 9.
    Henkin, G.M., Romanov, A.V.: Exact Hölder estimates for the solutions of the \(\bar{\partial }\)-equation. Math USSR Izv. 5, 1180–1192 (1971)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ha, L.K., Khanh, T.V., Raich, A.: \(L^p\)-estimates for the \(\bar{\partial }\)-equation on a class of infinite type domains. Int. J. Math. 25, 1450106 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ha, L.K., Khanh, T.V.: Boundary regularity of the solution to the complex Monge–Ampère equation on pseudoconvex domains of infinite type. Math. Res. Lett. 22(2), 467–484 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hörmander, L.: \(L^2\) estimates and existence theorems for the \(\bar{\partial }\) operator. Acta. Math. 113, 89–125 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Khanh, T.V.: Supnorm and \(f\)-Hölder estimates for \(\bar{\partial }\) on convex domains of general type in \(\mathbb{C}^2\). J. Math. Anal. Appl. 430, 522–531 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kohn, J.J.: Boundary behaviour of \(\bar{\partial }\) on weakly pseudoconvex manifolds of dimension two. J. Differ. Geom. 6, 523–542 (1972)CrossRefzbMATHGoogle Scholar
  15. 15.
    Khanh, T.V., Zampieri, G.: Regularity of the \(\bar{\partial }\)-Neumann problem at point of infinite type. J. Funct. Anal. 259(11), 2760–2775 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Khanh, T.V., Zampieri, G.: Necessary geometric and analytic conditions for general estimates in the \(\bar{\partial }\)-Neumann problem. Invent. Math. 3, 729–750 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Krantz, S.G.: Optimal Lipschitz and \(L^p\) regularity for the equation \(\bar{\partial } u=f\) on strongly pseudo-convex domains. Math. Ann. 219, 233–260 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Range, R.M.: The Carathéodory metric and holomorphic maps on a class of weakly pseudoconvex domains. Pac. J. Math. 78(1), 173–189 (1978)CrossRefzbMATHGoogle Scholar
  19. 19.
    Range, R.M.: On the Hölder estimates for \(\bar{\partial } u=f\) on weakly pseudoconvex domains, Proc. Inter. Conf. Cortona, Italy 1976–1977, pp. 247–267. Scoula. Norm. Sup., Pisa (1978)Google Scholar
  20. 20.
    Range, R.M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Springer, Berlin (1986)CrossRefzbMATHGoogle Scholar
  21. 21.
    Romanov, A.V.: A formula and estimates for solutions of the tangential Cauchy–Riemann equation. Math. Sb. 99, 58–83 (1976)MathSciNetGoogle Scholar
  22. 22.
    Rudin, W.: Function theory in the unit ball of \(\mathbb{C}^n\). Springer, New York (1980)CrossRefzbMATHGoogle Scholar
  23. 23.
    Shaw, M.C.: Hölder and \(L^p\) estimates for \(\bar{\partial }_b\) on weakly pseudoconvex boundaries in \(\mathbb{C}^2\). Math. Ann. 279, 635–652 (1988)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Shaw, M.C.: Optimal Hölder and \(L^p\) estimates for \(\bar{\partial }_b\) on the boundaries of real ellipsoids in \(\mathbb{C}^n\). Trans. Am. Math. Soc. 324(1), 213–234 (1991)Google Scholar
  25. 25.
    Stein, E.L.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  26. 26.
    Straube, E.J.: Good Stein neighborhood bases and regularity of the \(\bar{\partial }\)-Neumann problem. Ill. J. Math. 45(3), 865–871 (2001)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Stein, E.L., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1975)zbMATHGoogle Scholar
  28. 28.
    Verdera, J.: \(L^{\infty }\)- continuity of Henkin operators solving \(\bar{\partial }\) in certain weakly pseudoconvex domains of \(\mathbb{C}^2\). Proc. R. Soc. Edinb. 99, 25–33 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zampieri, G.: Complex Analysis and CR Geometry, vol. 43. American Mathematical Society ULECT, Providence (2008)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceUniversity of Science, Vietnam National University HoChiMinh City (VNU-HCM)Ho Chi Minh CityVietnam

Personalised recommendations