Results in Mathematics

, Volume 70, Issue 3–4, pp 337–347 | Cite as

Hypercyclic Toeplitz Operators

Article

Abstract

We study hypercyclicity of the Toeplitz operators in the Hardy space \({H^{2}(\mathbb{D})}\) with symbols of the form \({p(\overline{z}) + \varphi(z)}\), where \({p}\) is a polynomial and \({\varphi \in H^{\infty}(\mathbb{D})}\). We find both necessary and sufficient conditions for hypercyclicity which almost coincide in the case when deg \({p =1}\).

Keywords

Hypercyclic operator Toeplitz operator univalent function 

Mathematics Subject Classification

47A16 47B35 30H10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayart F., Matheron E.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Bourdon P.S.: Density of the polynomials in Bergman spaces. Pac. J. Math. 130(2), 215–221 (1987)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bourdon P.S., Shapiro J.H.: Hypercyclic operators that commute with the Bergman backward shift. Trans. Am. Math. Soc. 352, 5293–5316 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Caughran, J.G.: Polynomial approximation and spectral properties of composition operators on H 2. Indiana Univ. Math. J. 21(1), 81–84 (1971)Google Scholar
  5. 5.
    Duren P.L.: Theory of H p Spaces. Academic Press, New-York (1970)MATHGoogle Scholar
  6. 6.
    Godefroy G., Shapiro J.H.: Operators with dense, invariant cyclic vector manifolds. J. Funct. Anal. 98, 229–269 (1991)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear chaos. In: Universitext. Springer, London (2011)Google Scholar
  8. 8.
    Koosis P.: Introduction to H p. Cambridge University Press, Cambridge (1980)MATHGoogle Scholar
  9. 9.
    Sarason D.: Weak-star generators of H . Pac. J. Math. 17(3), 519–528 (1966)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Shkarin, S.: Orbits of coanalytic Toeplitz operators and weak hypercyclicity. arXiv:1210.3191

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Mathematics and MechanicsSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.National Research University Higher School of EconomicsSt. PetersburgRussia
  3. 3.Chebyshev LaboratorySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations