Results in Mathematics

, Volume 70, Issue 1–2, pp 31–79 | Cite as

Nonlinear Nonhomogeneous Dirichlet Equations Involving a Superlinear Nonlinearity

  • Nikolaos S. Papageorgiou
  • Patrick Winkert


We consider a nonlinear elliptic Dirichlet equation driven by a nonlinear nonhomogeneous differential operator involving a Carathéodory function which is (p−1)-superlinear but does not satisfy the Ambrosetti–Rabinowitz condition. First we prove a three-solutions-theorem extending an earlier classical result of Wang (Ann Inst H Poincaré Anal Non Linéaire 8(1):43–57, 1991). Subsequently, by imposing additional conditions on the nonlinearity \({f(x,\cdot)}\), we produce two more nontrivial constant sign solutions and a nodal solution for a total of five nontrivial solutions. In the special case of (p, 2)-equations we prove the existence of a second nodal solution for a total of six nontrivial solutions given with complete sign information. Finally, we study a nonlinear eigenvalue problem and we show that the problem has at least two nontrivial positive solutions for all parameters \({\lambda > 0}\) sufficiently small where one solution vanishes in the Sobolev norm as \({\lambda \to 0^+}\) and the other one blows up (again in the Sobolev norm) as \({\lambda \to 0^+}\).

Mathematics Subject Classification

35J20 35J60 35J92 58E05 


Superlinear nonlinearity Ambrosetti–Rabinowitzcondition nonlinear regularity nodal solutions tangencyprinciple critical groups nonlinear eigenvalue problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints. Mem. Am. Math. Soc. 196(915), vi+70 (2008)Google Scholar
  2. 2.
    Aizicovici S., Papageorgiou N.S., Staicu V.: Existence of multiple solutions with precise sign information for superlinear Neumann problems. Ann. Mat. Pura Appl. (4) 188(4), 679–719 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aizicovici S., Papageorgiou N.S., Staicu V.: On p-superlinear equations with a nonhomogeneous differential operator. NoDEA Nonlinear Differ. Equ. Appl. 20(2), 151–175 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bartsch T., Li S.: Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlinear Anal. 28(3), 419–441 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bartsch T., Liu Z.: On a superlinear elliptic p-Laplacian equation. J. Differ. Equ. 198(1), 149–175 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bartsch T., Liu Z., Weth T.: Nodal solutions of a p-Laplacian equation. Proc. Lond. Math. Soc. (3) 91(1), 129–152 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Benci V., D’Avenia P., Fortunato D., Pisani L.: Solitons in several space dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154(4), 297–324 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bredon G.E.: Topology and Geometry. Springer, New York (1997)MATHGoogle Scholar
  10. 10.
    Brezis H., Nirenberg L.: H 1 versus C 1 local minimizers. C. R. Acad. Sci. Paris Sér. I Math. 317(5), 465–472 (1993)MathSciNetMATHGoogle Scholar
  11. 11.
    Chang K.-C.: Methods in Nonlinear Analysis. Springer, Berlin (2005)MATHGoogle Scholar
  12. 12.
    Cherfils L., Il’yasov Y.: On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian. Commun. Pure Appl. Anal. 4(1), 9–22 (2005)MathSciNetMATHGoogle Scholar
  13. 13.
    Cingolani S., Vannella G.: Critical groups computations on a class of Sobolev Banach spaces via Morse index. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(2), 271–292 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Derrick G.H.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5, 1252–1254 (1964)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Díaz J.I., Saá J.E.: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math. 305(12), 521–524 (1987)MATHGoogle Scholar
  16. 16.
    Dugundji J.: Topology. Allyn and Bacon Inc., Boston (1966)MATHGoogle Scholar
  17. 17.
    Dunford N., Schwartz J.T.: Linear Operators I. Wiley-Interscience, New York (1958)MATHGoogle Scholar
  18. 18.
    Filippakis M., Kristály A., Papageorgiou N.S.: Existence of five nonzero solutions with exact sign for a p-Laplacian equation. Discrete Contin. Dyn. Syst. 24(2), 405–440 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    García Azorero J.P., Peral Alonso I., Manfredi J.J.: Sobolev versus H ölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2(3), 385–404 (2000)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gasiński L., Papageorgiou N.S.: Nonlinear Analysis. Chapman & Hall/CRC, Boca Raton (2006)MATHGoogle Scholar
  21. 21.
    Gasiński L., Papageorgiou N.S.: Existence and multiplicity of solutions for Neumann p–Laplacian-type equations. Adv. Nonlinear Stud. 8(4), 843–870 (2008)MathSciNetMATHGoogle Scholar
  22. 22.
    Gasiński L., Papageorgiou N.S.: Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a nonsmooth potential. Set Valued Var. Anal. 20(3), 417–443 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Gasiński L., Papageorgiou N.S.: Nonhomogeneous nonlinear Dirichlet problems with a p-superlinear reaction. Abstr. Appl. Anal. 2012, 1–28 (2012)MathSciNetMATHGoogle Scholar
  24. 24.
    Granas A., Dugundji J.: Fixed Point Theory. Springer, New York (2003)CrossRefMATHGoogle Scholar
  25. 25.
    Jiu Q., Su J.: Existence and multiplicity results for Dirichlet problems with p-Laplacian. J. Math. Anal. Appl. 281(2), 587–601 (2003)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ladyzhenskaya O.A., Ural’tseva N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)MATHGoogle Scholar
  27. 27.
    Lieberman G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16(2–3), 311–361 (1991)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Liu S.: On superlinear problems without the Ambrosetti and Rabinowitz condition. Nonlinear Anal. 73(3), 788–795 (2010)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Li G., Yang C.: The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti–Rabinowitz condition. Nonlinear Anal. 72(12), 4602–4613 (2010)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Miyagaki O.H., Souto M.A.S.: Superlinear problems without Ambrosetti and Rabinowitz growth condition. J. Differ. Equ. 245(12), 3628–3638 (2008)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Moroz V.: Solutions of superlinear at zero elliptic equations via Morse theory. Topol. Methods Nonlinear Anal. 10(2), 387–397 (1997)MathSciNetMATHGoogle Scholar
  32. 32.
    Motreanu D., Papageorgiou N.S.: Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator. Proc. Am. Math. Soc. 139(10), 3527–3535 (2011)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Palais R.S.: Homotopy theory of infinite dimensional manifolds. Topology 5, 1–16 (1966)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Papageorgiou N.S., Kyritsi-Yiallourou S.T.: Handbook of Applied Analysis. Springer, New York (2009)MATHGoogle Scholar
  35. 35.
    Papageorgiou N.S., Rocha E.M., Staicu V.: A multiplicity theorem for hemivariational inequalities with a p-Laplacian-like differential operator. Nonlinear Anal. 69(4), 1150–1163 (2008)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Papageorgiou N.S., Smyrlis G.: On nonlinear nonhomogeneous resonant Dirichlet equations. Pac. J. Math. 264(2), 421–453 (2013)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Pucci P., Serrin J.: The Maximum Principle. Birkhäuser, Basel (2007)MATHGoogle Scholar
  38. 38.
    Sun M.: Multiple solutions of a superlinear p-Laplacian equation without AR-condition. Appl. Anal. 89(3), 325–336 (2010)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Vázquez J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12(3), 191–202 (1984)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Wang Z.Q.: On a superlinear elliptic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 8(1), 43–57 (1991)MathSciNetMATHGoogle Scholar
  41. 41.
    Winkert P.: Local \({C^1(\overline{\Omega})}\)-minimizers versus local \({W^{1,p}(\Omega)}\) -minimizers of nonsmooth functionals. Nonlinear Anal. 72(11), 4298–4303 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsNational Technical UniversityZografou CampusGreece
  2. 2.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations