Advertisement

Results in Mathematics

, Volume 68, Issue 3–4, pp 455–499 | Cite as

Hyper-ideal Circle Patterns with Cone Singularities

  • Nikolay Dimitrov
Article

Abstract

The main objective of this study is to explore how hyper-ideal circle patterns can be reconstructed from given combinatorial angle data. More precisely, we focus on the existence, uniqueness and construction of hyper-ideal circle patterns with prescribed combinatorics and intersection angles between adjacent circles. In essence, we propose a new proof of the already existing results from Jean-Marc Schlenker’s work on the topic. Our attempt is to develop a slightly different approach that is potentially more suitable for applications and thus leading to a more direct convex variational principle than Schlenker’s.

Keywords

Hyper-ideal circle pattern cell complex hyper-ideal tetrahedron hyperbolic volume variational principle 

Mathematics Subject Classification

52C26 52A55 57M50 52C25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandrov A.D.: Convex Polyhedra. Springer, Berlin (2002)Google Scholar
  2. 2.
    Andreev E.M.: On convex polyhedra in Lobacevskii space. Math. USSR Sb. 10, 413–440 (1970)CrossRefGoogle Scholar
  3. 3.
    Andreev E.M.: On convex polyhedra of finite volume in Lobacevskii space. Math. USSR Sb. 12, 255–259 (1970)CrossRefGoogle Scholar
  4. 4.
    Bao X., Bonahon F.: Hyperideal polyhedra in hyperbolic 3-space. Bull. Soc. Math. Fr. 130(3), 457–491 (2002)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Benedetti R., Petronio C.: Lectures on Hyperbolic Geometry. Universitext, Springer, Berlin (1992)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bobenko A.I., Izmestiev I.: Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes. Ann. Inst. Fourier 58(2), 447–505 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bobenko A.I., Springborn B.A.: Variational principles for circle patterns and Koebe’s theorem. Trans. Am. Math. Soc. 356(2), 659–689 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Buser P.: Geometry and Spectra of Compact Riemann Surfaces, Progress in Math. 106. Birkhäuser, Boston (1992)Google Scholar
  9. 9.
    Colin de Verdière, Y.: Un principe variationnel pour les empilements de cercles.. Invent. Math. 104(3), 655–669 (1991)Google Scholar
  10. 10.
    Dimitrov, N.: Hyper-ideal circle patterns with cone singularities, extended electronic version. arXiv:math.MG/14066741
  11. 11.
    Edelsbrunner H.: Geometry and Topology for Mesh Generation, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  12. 12.
    Leibon G.: Characterizing the Delaunay decompositions of compact hyperbolic surfaces. Geom. Topol. 6, 361–391 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Milnor, J.W.: The Schläfli differential equality. In: Collected Papers I: Geometry, pp. 281–295. Publish or Perish, Houston (1994)Google Scholar
  14. 14.
    Rivin I.: Euclidean structures of simplicial surfaces and hyperbolic volume. Ann. Math. 139, 553–580 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Rivin I.: A characterization of ideal polyhedra in hyperbolic 3-space. Ann. Math. 2 143(1), 51–70 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Rivin I.: Combinatorial optimization in geometry. Adv. Appl. Math. 31(1), 242–271 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Roeder R.K.W., Hubbard J.H., Dunbar W.D.: Andreev’s theorem on hyperbolic polyhedra. Ann. Inst. Fourier 57(3), 825–882 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Rousset M.: Sur la rigidité de polyèdres hyperboliques en dimension 3: cas de volume fini, cas hyperidéal cas fuchsien. Bull. Soc. Math. Fr. 132(2), 233–261 (2004)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Schläfli, L.: Theorie der vielfachen Kontinuität, Gesammelte Math. Abh. 1. Birkhäuser, Basel, pp. 167–392 (1950)Google Scholar
  20. 20.
    Schlenker J.-M.: Hyperideal circle patterns. Math. Res. Lett. 12(1), 85–112 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Schlenker J.-M.: Circle patterns on singular surfaces. Discrete Comput. Geom. 40(1), 47–102 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Schlenker, J.-M.: Hyperideal polyhedra in hyperbolic manifolds, electronic version. arXiv:math.GT/0212355
  23. 23.
    Schlenker J.-M.: A rigidity criterion for non-convex polyhedra. Discrete Comput. Geom. 33(2), 207–221 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Springborn B.A.: A variational principle for weighted Delaunay triangulations and hyperideal polyhedra. J. Differ. Geom. 78(2), 333–367 (2008)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Springborn B.A.: A unique representation of polyhedral types. Centering via Möbius transformations. Math. Z. 249(3), 513–517 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Thurston, W.P.: The geometry and topology of three-manifolds, Electronic library of MSRI (2002). http://library.msri.org/books/gt3m/
  27. 27.
    Thurston, W.P.: Three-dimensional geometry and topology. In: Levy, S. (ed.) Princeton Mathematical Series, vol. 35. Princeton University Press, Princeton (1997)Google Scholar
  28. 28.
    Ushijima A.: A volume formula for generalized hyperbolic tetrahedra. Non-Euclidean Geom. 581, 249–265 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Insitut für Mathematik MA 8-4Technische Universität BerlinBerlinGermany

Personalised recommendations