Results in Mathematics

, Volume 67, Issue 3–4, pp 431–444 | Cite as

A Class of Invertible Subelliptic Operators in S(m, g)-Classes

  • Julio DelgadoEmail author


Given a self-adjoint second order differential operator L with positive characteristic and subellipticity of order 1 ≤ τ < 2. In this paper we study the invertibility of L + C in a suitable S(m,g)-class.


Degenerate elliptic operators nonhomogeneous calculus microlocal analysis 

Mathematics Subject Classification

Primary 35J70 Secondary 35A27 47G30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bony, J.M., Chemin, J.Y.: Espaces fonctionnels associés au calcul de Weyl–Hörmander. Bull. Soc. Math. Fr. 122, 77–118 (1994)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Beals, R.: Characterization of pseudodifferential operators and applications. Duke Math. J. 44(1), 45–57 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Beals, R., Fefferman, C.: Spatially inhomogeneous pseudodifferential operators I. Commun. Pure Appl. Math. 27, 1–24 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Beals, R., Gaveau, B., Greiner, P.: Green’s functions for some highly degenerate elliptic operators. J. Funct. Anal. 165, 407–429 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bony, J.-M., Lerner, B.: Quantification asymptotique et microlocalisation d’ordre superieur I. Ann. Sci. Ec. Norm. Sup. 22, 377–433 (1989)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Cancelier, C.E., Chemin, J.-Y., Xu, C.-J.: Calcul de Weyl–Hörmander et opérateurs sous-elliptiques. Ann. Inst. Fourier 43, 1157–1178 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Delgado, J.: Estimations L p pour une classe d’opérateurs pseudo-différentiels dans le cadre du calcul de Weyl–Hörmander. J. Anal. Math. 100, 337–374 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Delgado, J., Zamudio, A.: Invertibility for a class of degenerate elliptic operators. J. Pseudo-Differ. Oper. Appl. 1, 207–231 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fefferman, C., Phong, D.H.: On positivity of pseudo-differential operators. Proc. Natl. Acad. Sci. USA 75(10), 4673–4674 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer, Berlin (1985)Google Scholar
  11. 11.
    Lerner, N.: Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators. Pseudo-Differential Operators. Birkhäuser, Basel (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Maniccia, L., Mughetti, M.: Parametrix construction for a class of anisotropic operators. Ann. Univ. Ferrara. 49, 263–284 (2003)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Maniccia, L., Mughetti, M.: SAK principle for a class of Grushin-type operators. Rev. Math. Iberoam. 22(1), 259–286 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Mughetti, M., Nicola, F.: On the generalization of Hörmander’s inequality. Commun. PDE 30(4–6), 509–537 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Mustapha, S.: Sous-ellipticité dans le cadre du calcul S(m, g). Commun. PDE 19, 245–275 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Mustapha, S.: Sous-ellipticité dans le cadre du calcul S(m, g) II. Commun. PDE 20, 541–566 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Xu, C., Zhu, X.: On the inverse of a class of degenerate elliptic operator. Chinese J. Contemp. Math. 16(3), 261–274 (1995)MathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsImperial College LondonLondonUK

Personalised recommendations