Advertisement

Results in Mathematics

, Volume 65, Issue 1–2, pp 95–103 | Cite as

Stability Properties in Some Classes of Second Order Partial Differential Equations

  • Eszter GselmannEmail author
Article

Abstract

The main purpose of this note is to investigate the stability problem in a certain class of partial differential equations.

Mathematics Subject Classification (2000)

39B82 39B52 35B35 

Keywords

Stability partial differential equation Laplace’s equation elliptic equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alsina C., Ger R.: On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 2(4), 373–380 (1998). doi: 10.1155/S102558349800023X zbMATHMathSciNetGoogle Scholar
  2. 2.
    András S., Kolumbán J.J.: On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions. Nonlinear Anal. 82, 1–11 (2013). doi: 10.1016/j.na.2012.12.008 CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. Wiley Classics Library. Wiley, New York (1989) (Partial differential equations, Reprint of the 1962 original, A Wiley-Interscience Publication)Google Scholar
  4. 4.
    Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence, RI (2010)Google Scholar
  5. 5.
    Găvruţă, P., Jung, S.M., Li, Y.: Hyers-Ulam stability for second-order linear differential equations with boundary conditions. Electron. J. Differ. Equ. 5 80 (2011)Google Scholar
  6. 6.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001) (Reprint of the 1998 edition)Google Scholar
  7. 7.
    Hegyi B., Jung S.M.: On the stability of Laplace’s equation. Appl. Math. Lett. 26(5), 549–552 (2013). doi: 10.1016/j.aml.2012.12.014 CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hyers D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27, 222–224 (1941)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Jung S.M.: A fixed point approach to the stability of differential equations y′ = F(x, y). Bull. Malays. Math. Sci. Soc. (2) 33(1), 47–56 (2010)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Jung, S.M.: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and its Applications, vol. 48. Springer, New York (2011). doi: 10.1007/978-1-4419-9637-4
  11. 11.
    Jung S.M.: Approximate solutions of a linear differential equation of third order. Bull. Malays. Math. Sci. Soc. (2) 35(4), 1063–1073 (2012)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Kačur, J.: Method of Rothe in evolution equations, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 80. BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1985) (With German, French and Russian summaries)Google Scholar
  13. 13.
    Lax P.D.: On the existence of Green’s function. Proc. Am. Math. Soc. 3, 526–531 (1952)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Polyanin A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2002)zbMATHGoogle Scholar
  15. 15.
    Prástaro A., Rassias T.M.: Ulam stability in geometry of PDE’s. Nonlinear Funct. Anal. Appl. 8(2), 259–278 (2003)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Rezaei H., Jung S.M., Rassias T.M.: Laplace transform and Hyers–Ulam stability of linear differential equations. J. Math. Anal. Appl. 403(1), 244–251 (2013). doi: 10.1016/j.jmaa.2013.02.034 CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of DebrecenDebrecenHungary

Personalised recommendations