Results in Mathematics

, Volume 63, Issue 1–2, pp 597–610 | Cite as

Reflection Spaces and Corresponding Kinematic Structures



For a reflection space (P, Γ) [introduced in Karzel and Taherian (Results Math 59:213–218, 2011)] we define the notion “Reducible Subspace”, consider two subsets of \({\Gamma, \Gamma^{+} := \{a b\,|\, a,b \in P\}}\) and \({\Gamma^{-} := \{a b c\,|\, a, b, c \in P\}}\) and the map
$$ \kappa : 2^{P} \to 2^{\Gamma^+} ; X \mapsto X \cdot X := \{xy\,|\, x,y \in X\}$$
We show, for each subspace S of (P, Γ), V := κ(S) is a v-subgroup (i.e. V is a subgroup of Γ+ with if \({\xi = xy \in V, \xi \neq 1}\) then \({x \cdot \overline{x,y}\subseteq V}\)) if and only if S is reducible. Our main results are stated in the items 1–5 in the introduction.

Mathematics Subject Classification (2000)

Primary 51M10 Secondary 51G05 


Reflection space Kinematic space Incidence group Reducible set v-Subgroup 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karzel, H., Sörensen, K., Windelberg, D.: Einführung in die Geometrie. UTB 184. Göttingen (1973)Google Scholar
  2. 2.
    Karzel H.: Kinematic Spaces, Istituto Nazionale di Alta Matematica. Symposia Mathematica XI, 413–439 (1973)MathSciNetGoogle Scholar
  3. 3.
    Karzel H., Taherian S.-Gh.: Reflection spaces, partial K-loops and K-loops. Results Math. 59, 213–218 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Karzel, H., Graumann, G.: Gruppentheoretische Begründung metrischer Geometrien. Ausarbeitung der von Prof. H. Karzel in WS 1962/63 an der Uni. Hamburg gehaltenen Vorlesung (1963)Google Scholar
  5. 5.
    Sörensen K.: Elliptische Ebenen. Mitt. Math. Ges. Hamburg. 10, 277–296 (1976)MATHGoogle Scholar
  6. 6.
    Sörensen K.: Elliptische Räume. Mitt. Math. Ges. Hamburg. 18, 159–167 (1999)MathSciNetMATHGoogle Scholar
  7. 7.
    Sperner, E.: Ein gruppentheoretischer Beweis des Satzes von Desargues in der absoluten Axiomatik. Archiv der Mathematik 5, 458–468 (1954) (reprinted in: H. Karzel and K. Sörensen: Wandel von Begriffsbildungen in der Mathematik Wissenschaftliche Buchgesellschaft Darmstadt (1984) 177–188)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Zentrum MathematikTechnische Universität MünchenMunichGermany
  2. 2.Department of Mathematical SciencesIsfahan University of TechnologyIsfahanIran

Personalised recommendations