Results in Mathematics

, Volume 63, Issue 1–2, pp 241–250 | Cite as

Dilation of Dual Frame Pairs in Hilbert C*-Modules

  • Deguang Han
  • Wu Jing
  • David Larson
  • Pengtong Li
  • Ram N. Mohapatra
Article

Abstract

We investigate the geometric properties for Hilbert C*-modular frames. We show that any dual frame pair in a Hilbert C*-module is an orthogonal compression of a Riesz basis and its canonical dual for some larger Hilbert C*-module. This generalizes the Hilbert space dual frame pair dilation theory due to Casazza, Han and Larson to dual Hilbert C*-modular frame pairs. Additionally, for any Hilbert C*-modular dual frame pair induced by a group of unitary operators, we show that there is a dilated dual pair which inherits the same group structure.

Mathematics Subject Classification (2010)

Primary 46L08 Secondary 42C15 46H25 

Keywords

Frames Riesz bases dilation dual frame pairs frame vectors unitary groups Hilbert C*-modules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Casazza P., Han D., Larson D.: Frames in Banach spaces. Contemp. Math. 247, 149–181 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Christensen O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2002)Google Scholar
  3. 3.
    Duffin R., Schaeffer A.: A class of nonhamonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Frank M., Larson D.: Modular frames for Hilbert C*-modules and symmetric approximation of frames. Proc. SPIE 4119, 325–336 (2000)CrossRefGoogle Scholar
  5. 5.
    Frank M., Larson D.: Frames in Hilbert C*-modules and C*-algebras. J. Oper. Theory 48, 273–314 (2002)MathSciNetMATHGoogle Scholar
  6. 6.
    Han D., Jing W., Larson D., Mohapatra R.: Riesz bases and their dual modular frames in Hilbert C*-modules. J. Math. Anal. Appl. 343, 246–256 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Han D., Jing W., Mohapatra R.: Perturbation of frames and Riesz bases in Hilbert C*-modules. Linear Algebra Appl. 431, 746–759 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Han D., Larson D.: Frames, bases and group representations. Mem. Am. Math. Soc. 147(697), 1–94 (2000)MathSciNetGoogle Scholar
  9. 9.
    Jing, W.: Frames in Hilbert C*-modules, Ph. D. Thesis, University of Central Florida, Orlando (2006)Google Scholar
  10. 10.
    Jing W., Han D., Mohapatra R.: Structured Parseval frames in Hilbert C*-modules. Contemp. Math. 414, 275–287 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kasparov G.: Hilbert C*-modules: the theorem of Stinespring and Voiculescu. J. Oper. Theory 4, 133–150 (1980)MathSciNetMATHGoogle Scholar
  12. 12.
    Lance, E.: Hilbert C*-modules—a Toolkit for Operator Algebraists. London Mathematical Society lecture Note Series, vol. 210, Cambridge University Press, Cambridge (1995)Google Scholar
  13. 13.
    Li H.: A Hilbert C*-module admitting no frames. Bull. Lond. Math. Soc. 43, 388–394 (2010)CrossRefGoogle Scholar
  14. 14.
    Manuilov V., Troisky E.: Hilbert C*-Modules. American Mathematical Society, Providence (2005)Google Scholar
  15. 15.
    Packer J., Rieffel M.: Wavelet filter functions, the matrix completion problem, and projective modules over \({C({\mathbb T}^n)}\). J. Fourier Anal. Appl. 9, 101–116 (2003)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Packer J., Rieffel M.: Projective multi-resolution analyses for \({L^2({\mathbb R}^2)}\). J. Fourier Anal. Appl. 10, 439–464 (2004)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Paley R., Wiener N.: Fourier Transforms in the Complex Domains, AMS Colloquium Publications, vol. 19. American Mathematical Society, Providence (1987)Google Scholar
  18. 18.
    Paschke W.: Inner product modules over B*-algebras. Trans. Am. Math. Soc. 182, 443–468 (1973)MathSciNetMATHGoogle Scholar
  19. 19.
    Raeburn I., Thompson S.: Countably generated Hilbert modules, the Kasparov stabilization theorem, and frames in Hilbert modules. Proc. Am. Math. Soc. 131, 1557–1564 (2003)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Wegge-Olsen N.: K-Theory and C*-Algebras—a Friendly. Approach Oxford University Press, Oxford (1993)Google Scholar
  21. 21.
    Wood P.: Wavelets and Hilbert modules. J. Fourier Anal. Appl. 10, 573–598 (2004)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Deguang Han
    • 1
  • Wu Jing
    • 2
  • David Larson
    • 3
  • Pengtong Li
    • 4
  • Ram N. Mohapatra
    • 1
  1. 1.Department of MathematicsUniversity of Central FloridaOrlandoUSA
  2. 2.Department of Mathematics and Computer ScienceFayetteville State UniversityFayettevilleUSA
  3. 3.Department of MathematicTexas A&M UniversityCollege StationUSA
  4. 4.Department of MathematicsNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations