Results in Mathematics

, Volume 63, Issue 1–2, pp 171–182 | Cite as

On Characterization of Absolute Geometries



Starting from a general absolute plane A = (P, L, α, ≡) in the sense of Karzel et al. (Einführung in die Geometrie, p. 96, 1973), Karzel and Marchi introduced the notion of a Lambert–Saccheri quadrangle (L-S quadrangle) in Karzel and Marchi (Le Matematiche LXI:27–36, 2006): A quadruple (a, b, c, d) of points of P, no three collinear, is a L-S quadrangle, if \({\overline{a,d}\bot\overline{a,b}\bot\overline{b,c}\bot\overline{c,d}}\). Denoting the foot of a on the line \({\overline{c, d}}\) with \({a^{\prime}=\{a\bot\overline{c,d}\}\cap \overline{c,d}}\), the L-S quadrangle (a, b, c, d) is called rectangle, hyperbolic or elliptic quadrangle if \({a^{\prime}=d,\; a^{\prime}\,{\in}\, ]c,d[}\) or\({a^{\prime}\,{\notin}\, ]c,d[\cup \{d\}}\) respectively. Let LS be the set of all L-S quadrangles and LS r , LS h or LS e the subset of all rectangles, hyperbolic or elliptic L-S quadrangles respectively. In Karzel and Marchi (Le Matematiche LXI:27–36, 2006) it was claimed that either LSLS r or LSLS h or LSLS e . To this classification we add five further classifications of general absolute planes by using “distance” [defined in Karzel and Marchi (Discrete Math 308:220–230, 2008)] or the notions of “interior” and “exterior” angle, introduced in Karzel et al. (Resultate Math 51:61–71, 2007) and considering besides Lambert–Saccheri quadrangles, also triangles in particular right-angled triangles. For Lambert–Saccheri quadrangles (a, b, c, d) the relations between distances of the diagonal points (a, c) and (b, d) or between the “midpoint” \({o:=\overline{a,c}\cap\overline{b,d}}\), and the corner points a, b, c, d give us possibilities for complete characterizations. Using triangles (a, b, c) and denoting by m and n the midpoints of (a, b) and (a, c) we classify the absolute planes by the relations between the distances |b, c| and 2|m, n|. All our main results are summarized at the end of the introduction.

Mathematics Subject Classification (2000)

Primary 51F05 Secondary 51F20 


Absolute plane triangle Lambert–Saccheri quadrangle measure of segment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gröger, D.: Archimedisierung elliptischer Ebenen, Mitt. Math. Ges. Hamburg 11 (Heft 4), 441–457 (1987)MathSciNetMATHGoogle Scholar
  2. 2.
    Karzel H., Kroll H.J.: Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt (1988)MATHGoogle Scholar
  3. 3.
    Karzel H., Marchi M.: Introduction of measure for segments and angles in a general absolute plane. Discrete Math. 308, 220–230 (2008)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Karzel H., Marchi M.: Classification of general absolute geometries with Lambert–Saccheri quadrangle. Le Matematiche LXI, 27–36 (2006)MathSciNetGoogle Scholar
  5. 5.
    Karzel H., Marchi M., Pianta S.: Legendre-like theorems in a general absolute geometry. Resultate Math. 51, 61–71 (2007)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Karzel, H., Sörensen, K., Windelberg, D.: Einführung in die Geometrie., Vandenhoeck, Göttingen (1973)MATHGoogle Scholar
  7. 7.
    Karzel H.: Recent developments on absolute geometries and algebraization by K-loops. Discrete Math. 208/209, 387–409 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIsfahan University of TechnologyIsfahanIran

Personalised recommendations