Results in Mathematics

, Volume 60, Issue 1–4, pp 103–116 | Cite as

Pseudo-spherical Submanifolds with Degenerate Bianchi Transformation

Article

Abstract

We describe pseudo-spherical submanifolds with degenerate Bianchi transformation in constant curvature spaces.

Mathematics Subject Classification (2010)

Primary 53A07 

Keywords

Pseudo-spherical submanifold Bianchi transformation Tractrix Beltrami surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aminov Yu.A.: Geometry of Submanifolds. Gordon and Breach Science Publ., Amsterdam (2001)MATHGoogle Scholar
  2. 2.
    Aminov Yu.A., Sym A.: On Bianchi and Bäcklund transformations of two-dimensional surfaces in E 4. Mat. Physics, Analysis, Geometry 3, 75–89 (2000)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Gorkavyy V.A.: Bianchi congruences for surfaces in E 4. Mat. Sbornik 196:10, 79–102 (2005)Google Scholar
  4. 4.
    Gorkavyy V.A., Nevmerzhitskaya E.N.: Two-dimensional pseudo-spherical surfaces in E 4 with degenerate Bianchi transformation. Dopovd Nat. Akad. Sci. Ukraine 6, 13–18 (2010)Google Scholar
  5. 5.
    Masaltsev L.A.: Pseudo-spherical Bianchi congruence in E 2n-1. Mat. Physics, Analysis, Geometry 1, 505–512 (1994)MathSciNetGoogle Scholar
  6. 6.
    Otsuki T.: Isometric imbedding of Riemann manifolds in a Riemann manifold. J. Math. Soc. Japan 6, 221–234 (1954)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Tenenblat K.: Bäcklund’s theorem for submanifolds of space forms and a generalized wave equation. Bol. Soc. Bras. Mat. 16:2, 67–92 (1985)MathSciNetMATHGoogle Scholar
  8. 8.
    Tenenblat K., Terng C.-L.: Bäcklund’s theorem for n-dimensional submanifolds of R 2n-1. Annals of Mathematics 111, 477–490 (1980)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Tenenblat, K.: Transformations of manifolds and applications to differential equations. Pitman Monographs and Surveys in Pure Appl. Math, vol. 93, Longman Sci. Techn., Harlow, Essex; Wiley, New York (1998)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.B.Verkin Institute for Low Temperature PhysicsKharkivUkraine

Personalised recommendations