Results in Mathematics

, Volume 59, Issue 3–4, pp 359–400 | Cite as

The Summation Formulae of Euler–Maclaurin, Abel–Plana, Poisson, and their Interconnections with the Approximate Sampling Formula of Signal Analysis

  • P. L. ButzerEmail author
  • P. J. S. G. Ferreira
  • G. Schmeisser
  • R. L. Stens


This paper is concerned with the two summation formulae of Euler–Maclaurin (EMSF) and Abel–Plana (APSF) of numerical analysis, that of Poisson (PSF) of Fourier analysis, and the approximate sampling formula (ASF) of signal analysis. It is shown that these four fundamental propositions are all equivalent, in the sense that each is a corollary of any of the others. For this purpose ten of the twelve possible implications are established. Four of these, namely the implications of the grouping \({\text{APSF}\Leftarrow\text{ASF}\Rightarrow\text{EMSF}\Leftrightarrow\text{PSF}}\) are shown here for the first time. The proofs of the others, which are already known and were established by three of the above authors, have been adapted to the present setting. In this unified exposition the use of powerful methods of proof has been avoided as far as possible, in order that the implications may stand in a clear light and not be overwhelmed by external factors. Finally, the four propositions of this paper are brought into connection with four propositions of mathematical analysis for bandlimited functions, including the Whittaker–Kotel’nikov–Shannon sampling theorem. In conclusion, all eight propositions are equivalent to another. Finally, the first three summation formulae are interpreted as quadrature formulae.

Mathematics Subject Classification (2010)

65B15 65D32 94A20 


Euler–Maclaurin summation formula Abel–Plana summation formula Poisson summation formula Whittaker–Kotel’nikov–Shannon sampling theorem Approximate sampling formula Bandlimited signals Quadrature formulae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abel, N.H.: Solution de quelques problèmes à l’aide d’intégrales définies. In: Sylow, L., Lie, S. (eds.) Œuvres complètes d’Abel, vol. I, pp. 11–27. Johnson, New York (Reprint of the Nouvelle éd., Christiania, 1881) (1965)Google Scholar
  2. 2.
    Apostol T.M.: Mathematical Analysis, 2nd edn. Addison-Wesley Publishing Company, Reading (1974)zbMATHGoogle Scholar
  3. 3.
    Apostol T.M.: An elementary view of Euler’s summation formula. Am. Math. Monthly 106(5), 409–418 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Berndt B.C.: Ramanujan’s Notebooks Part. I. Springer, New York (1985)zbMATHGoogle Scholar
  5. 5.
    Bochner S.: Vorlesungen über Fouriersche Integrale. Chelsea Publishing Co., New York (1948)Google Scholar
  6. 6.
    Brown, J.L. Jr.: On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem. J. Math. Anal. Appl. 18, 75–84 [Erratum: J. Math. Anal. Appl. 21, 699 (1968)] (1967).Google Scholar
  7. 7.
    Butzer, P.L., Ferreira, P.J.S.G., Higgins, J.R., Schmeisser, G., Stens, R.L.: The sampling theorem, Poisson’s summation formula, general Parseval formula, reproducing kernel formula and the Paley–Wiener theorem for bandlimited signals—their interconnections. Appl. Anal. (in press). doi: 10.1080/00036811003627567
  8. 8.
    Butzer P.L., Gessinger A.: The approximate sampling theorem, Poisson’s sum formula, a decomposition theorem for Parseval’s equation and their interconnections. Ann. Numer. Math. 4(1–4), 143–160 (1997)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Butzer, P.L., Hauss, M.: Applications of sampling theory to combinatorial analysis, Stirling numbers, special functions and the Riemann zeta function. In: Higgins, J.R., Stens, R.L. (eds.) Sampling Theory in Fourier and Signal Analysis: Advanced Topics, vol. 2. Oxford University Press, Oxford (1999)Google Scholar
  10. 10.
    Butzer P.L., Higgins J.R., Stens R.L.: Classical and approximate sampling theorems: studies in the \({L^p({\mathbb R})}\) and the uniform norm. J. Approx. Theory 137(2), 250–263 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Butzer P.L., Nessel R.J.: Fourier Analysis and Approximation. Birkhäuser Verlag, Basel, Academic Press, New York (1971)zbMATHGoogle Scholar
  12. 12.
    Butzer, P.L., Ries, S., Stens, R.L.: Shannon’s sampling theorem, Cauchy’s integral formula, and related results. In: Butzer, P.L., Stens, R.L., Sz.-Nagy, B. (eds.) Anniversary Volume on Approximation Theory and Functional Analysis (Proc. Conf., Oberwolfach, Germany, 1983), ISNM, vol. 65, pp. 363–377. Birkhäuser Verlag, Basel (1984)Google Scholar
  13. 13.
    Butzer, P.L., Schmeisser, G., Stens, R.L.: An introduction to sampling analysis. In: F. Marvasti (ed.) Nonuniform Sampling—Theory and Practice, Information Technology: Transmission, Processing and Storage, pp. 17–121. Kluwer Academic/Plenum Publishers, New York, 2001Google Scholar
  14. 14.
    Butzer P.L., Splettstösser W.: A sampling theorem for duration-limited functions with error estimates. Information and Control 34(1), 55–65 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Butzer, P.L., Stens, R.L.: The Poisson summation formula, Whittaker’s cardinal series and approximate integration. In: Ditzian, Z., Meir, A., Riemenschneider, S.D., Sharma A. (eds.) Second Edmonton Conference on Approximation Theory (Edmonton, Alta., 1982), CMS Conference Proceedings, vol. 3, pp. 19–36. American Mathematical Society, Providence (1983)Google Scholar
  16. 16.
    Butzer, P.L., Stens, R.L.: The Euler–MacLaurin summation formula, the sampling theorem, and approximate integration over the real axis. Linear Algebra Appl. 52/53, 141–155 (1983)Google Scholar
  17. 17.
    Candelpergher B., Coppo M.A., Delabaere E.: La sommation de Ramanujan (The Ramanujan summation). Enseign. Math. (2) 43(1–2), 93–132 (1997)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Candelpergher B., Gadiyar H.G., Padma R.: Ramanujan summation and the exponential generating function \({\sum^\infty_{k=0} \frac{z^k}{k!} \zeta'(-k)}\). Ramanujan J. 21(1), 99–122 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Dahlquist, G.: On summation formulas due to Plana, Lindelöf and Abel, and related Gauss-Christoffel rules, I, II, III. BIT 37(2), 256–295 (1997), 37(4), 804–832 (1997), 39(1), 51–78 (1999)Google Scholar
  20. 20.
    de La Vallée Poussin, C.-J.: Collected Works/Œuvres Scientifiques, vol. III. Edited by Butzer, P.L., Mawhin, J., Vetro, P. Académie Royale de Belgique, Brussels, and Circolo Matematico di Palermo, Palermo (2004)Google Scholar
  21. 21.
    Dowling J.P.: The mathematics of the Casimir effect. Math. Mag. 62(5), 324–331 (1989)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Dym, H., McKean, H.P.: Fourier Series and Integrals. Probability and Mathematical Statistics, vol. 14. Academic Press, New York (1972)Google Scholar
  23. 23.
    Euler, L.: Methodus generalis summandi progressiones (A general method for summing series). Commentarii academiae scientiarum Petropolitanae 6, 68–97. Opera Omnia, ser. 1, vol. XIV, pp. 42–72. Presented to the St. Petersburg Academy on June 20, 1732. English translation by I. Bruce. (1738)
  24. 24.
    Euler, L.: Inventio summae cuiusque seriei ex dato termino generali (Finding the sum of any series from a given general term). Commentarii academiae scientiarum Petropolitanae, 8, 9–22. Opera Omnia, ser. 1, vol. XIV, pp. 108–123. Presented to the St. Petersburg Academy on October 13, 1735. English translation by J. Bell. (1741)
  25. 25.
    Gauss, C.F.: Werke, XIII. Band, herausgegeben von der Königlichen Gesellschaft der Wissenschaften zu Göttingen (Collected works, vol. VIII). Teubner Verlag, Leipzig, 1900. Reprint: Georg Olms Verlag, Hildesheim, 1973Google Scholar
  26. 26.
    Gautschi W.: Leonhard Eulers Umgang mit langsam konvergenten Reihen (Leonhard Euler’s handling of slowly convergent series). Elem. Math. 62(4), 174–183 (2007)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Gautschi W.: Leonhard Euler: his life, the man, and his works. SIAM Rev. 50(1), 3–33 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Gautschi, W.: Alexander M. Ostrowski (1893–1986), His life, work, and students. In: Colbois, B., Riedtmann, C., Schroeder, V. (eds.) Schweizerische Mathematische Gesellschaft–Société Mathématique Suisse–Swiss Mathematical Society 1910, pp. 257-278. EMS Publishing House, Zürich (2010)Google Scholar
  29. 29.
    Hardy G.H.: Divergent Series. Clarendon Press, Oxford (1949)zbMATHGoogle Scholar
  30. 30.
    Henrici, P.: Applied and Computational Complex Analysis, vol. 1, Power Series—Integration—Conformal Mapping—Location of Zeros. John Wiley & Sons, New York (1974)Google Scholar
  31. 31.
    Heuser, H.: Lehrbuch der Analysis, vol. I, 14th edn. B. G. Teubner, Stuttgart (2001)Google Scholar
  32. 32.
    Higgins J.R.: Two basic formulae of Euler and their equivalence to Tschakalov’s sampling theorem. Sampl. Theory Signal Image Process. 2(3), 259–270 (2003)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Higgins J.R.: Some groupings of equivalent results in analysis that include sampling principles. Sampl. Theory Signal Image Process. 4(1), 19–31 (2005)zbMATHMathSciNetGoogle Scholar
  34. 34.
    Higgins J.R.: The Riemann zeta function and the sampling theorem. Sampl. Theory Signal Image Process. 8(1), 1–12 (2009)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Higgins J.R., Schmeisser G., Voss J.J.: The sampling theorem and several equivalent results in analysis. J. Comput. Anal. Appl. 2(4), 333–371 (2000)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Jacobi, C.G.J.: Gesammelte Werke, I. Band. Herausgegeben von C.W. Borchardt (Collected works, vol. I). G. Reimer, Berlin (1881)Google Scholar
  37. 37.
    Lindelöf, E.: Le Calcul des résidus et ses applications à la théorie des fonctions. Gauthier-Villars, Paris (Reprint: Chelsea Publ., New York, 1947) (1905)Google Scholar
  38. 38.
    Maclaurin, C.: A treatise of fluxions, 2 vols. T. W. and T. Ruddimans, 1742. Nabu Press, Edinburgh (Reproduction) (2010)Google Scholar
  39. 39.
    Mills S.: The independent derivations by Euler, Leonhard and Maclaurin, Colin of the Euler–Maclaurin summation formula. Arch. Hist. Exact Sci. 33(1–3), 1–13 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Mostepanenko V., Trunov N.N.: The Casimir Effect and Its Applications. Clarendon Press, Oxford (1997)Google Scholar
  41. 41.
    Nikol’skiĭ, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Die Grundlehren der Mathematischen Wissenschaften, vol. 205. Springer, New York (Translated from the Russian by John M. Danskin, Jr.) (1975)Google Scholar
  42. 42.
    Ostrowski, A.M.: Vorlesungen über Differential- und Integralrechnung, vol. I–III. Birkhäuser Verlag, Basel, 1st edn. (1945–1954), 2nd edn. (1960–1967)Google Scholar
  43. 43.
    Ostrowski, A.M.: Collected Mathematical Papers, vol. 1–6. Birkhäuser Verlag, Basel (1983–1985)Google Scholar
  44. 44.
    Plana G.A.A.: Sur une nouvelle expression analytique des nombres Bernoulliens, propre à exprimer en termes finis la formule générale pour la sommation des suites. Mem. Accad. Sci. Torino (1) 25, 403–418 (1820)Google Scholar
  45. 45.
    Prellberg, T.: The mathematics of the Casimir effect, 96 p. Annual Lectures, School of Mathematical Sciences, Queen Mary, Univ. of London, London (2007)Google Scholar
  46. 46.
    Rahman, Q.I., Schmeisser, G.: On a Gaussian quadrature formula for entire functions of exponential type. In: Collatz, L., Meinardus, G., Nürnberger, G. (eds.) Numerical Methods of Approximation Theory, vol. 8 (Proceedings of a Conference, Oberwolfach, Germany, 1986), ISNM, vol. 81, pp. 155–168. Birkhäuser Verlag, Basel (1987)Google Scholar
  47. 47.
    Rahman Q.I., Schmeisser G.: Quadrature formulae and functions of exponential type. Math. Comput. 54(189), 245–270 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Rahman Q.I., Schmeisser G.: A quadrature formula for entire functions of exponential type. Math. Comput. 63(207), 215–227 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Rahman Q.I., Schmeisser G.: The summation formulae of Poisson, Plana, Euler–Maclaurin and their relationship. J. Math. Sci., Delhi 28, 151–171 (1994)zbMATHGoogle Scholar
  50. 50.
    Saharian, A.A.: The generalized Abel–Plana formula with applications to Bessel functions and Casimir effect. CERN document server, preprint hep-th/0002239. (2000)
  51. 51.
    Schuster W.: Ein Beweis der Funktionalgleichung der Riemannschen Zetafunktion (A proof of the functional equation of the Riemann zeta function). Arch. Math. (Basel) 73(4), 273–275 (1999)zbMATHMathSciNetGoogle Scholar
  52. 52.
    Stenger F.: Integration formulae based on the trapezoidal formula. J. Inst. Math. Appl. 12, 103–114 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications, vol. I. Springer, New York (1985)Google Scholar
  54. 54.
    Weiss P.: An estimate of the error arising from misapplication of the sampling theorem. Notices Am. Math. Soc. 10, 351 (1963)Google Scholar
  55. 55.
    Yoshino, K.: A relation among Ramanujan’s integral formula, Shannon’s sampling theorem and Plana’s summation formula. In: Aliyev Azeroğlu, T., Tamrazov, P.M. (eds.) Complex Analysis and Potential Theory (Proc. Conf. satellite to ICM 2006, Gebze, Turkey, 2006), pp. 191–197. World Scientific Publishing Co., Hackensack (2007)Google Scholar
  56. 56.
    Zygmund, A.: Trigonometric Series, vols. I, II, 2nd edn. Cambridge University Press, London (reprinted with corrections and some additions) (1968)Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • P. L. Butzer
    • 1
  • P. J. S. G. Ferreira
    • 2
  • G. Schmeisser
    • 3
  • R. L. Stens
    • 1
  1. 1.Lehrstuhl A für MathematikRWTH Aachen UniversityAachenGermany
  2. 2.IEETA/DETIUniversidade de AveiroAveiroPortugal
  3. 3.Department of MathematicsUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations