Results in Mathematics

, Volume 61, Issue 1–2, pp 127–135 | Cite as

Curvature of Hopf Hypersurfaces in a Complex Space Form

Article

Abstract

We study curvature of Hopf hypersurfaces in a complex projective space or hyperbolic space. In particular, we prove that there are no real hypersurfaces in a non-flat complex space form whose Reeb-sectional curvature vanishes.

Mathematics Subject Classification (2000)

53B20 53C15 53C25 

Keywords

Complex space form Hopf hypersurfaces (k, μ)-nullity distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berndt J.: Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine Angew. Math. 395, 132–141 (1989)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cecil T.E., Ryan P.J.: Focal sets and real hypersurfaces in complex projective space. Trans. Am. Math. Soc. 269, 481–499 (1982)MathSciNetMATHGoogle Scholar
  3. 3.
    Ivey T.A., Ryan P.J.: The structure Jacobi operator for hypersurfaces in \({\mathbb{CP}^2}\) and \({\mathbb{C}H^2}\) . Results Math. 56, 473–488 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ki U.-H., Suh Y.J.: On real hypersurfaces of a complex space form. Math. J. Okayama Univ. 32, 207–221 (1990)MathSciNetMATHGoogle Scholar
  5. 5.
    Kimura M.: Real hypersurfaces and complex submanifolds in complex projective space. Trans. Am. Math. Soc. 296, 137–149 (1986)CrossRefMATHGoogle Scholar
  6. 6.
    Kon M.: Pseudo-Einstein real hypersurfaces of complex space forms. J. Diff. Geometry 14, 339–354 (1979)MathSciNetMATHGoogle Scholar
  7. 7.
    Montiel S.: Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Jpn. 37, 515–535 (1985)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Niebergall R., Ryan P.J.: Real hypersurfaces of complex space forms. Math. Sci. Res. Inst. Publ. 32, 233–305 (1997)MathSciNetGoogle Scholar
  9. 9.
    Ortega M., Pérez J.D., Santos F.G.: Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms. Rocky Mountain J. Math. 36, 1603–1613 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Takagi R.: On homogeneous real hypersurfaces in a complex projective space. saka J. Math 19, 495–506 (1973)MathSciNetGoogle Scholar
  11. 11.
    Takagi R.: Real hypersurfaces in a complex projective space with constant principal curvatures. J. Math. Soc. Jpn. 15, 43–53 (1975)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of MathematicsChonnam National UniversityGwangjuKorea
  2. 2.Department of Mathematics, Faculty of Science and EngineeringShimane UniversityMatsue, ShimaneJapan

Personalised recommendations