Results in Mathematics

, Volume 57, Issue 3–4, pp 365–376 | Cite as

Zeros of Difference Polynomials of Meromorphic Functions

Article

Abstract

This research is a continuation of a recent paper, due to Liu and Laine, dealing with difference polynomials of entire function. In this paper, we investigate the value distribution of difference polynomials of meromorphic functions and prove some difference analogues to some classical results for differential polynomials.

Mathematics Subject Classification (2000)

Primary 30D35 Secondary 39B32 

Keywords

Exponent of convergence difference polynomials finite order 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chiang Y.M., Feng S.J.: On the Nevanlinna characteristic of f(z + η) and difference equations in the complex plane. Ramanujan J. 16, 105–129 (2008)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Clunie J.: On integral and meromorphic functions. J. Lond. Math. Soc. 37, 17–27 (1962)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Halburd R.G., Korhonen R.J.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314, 477–487 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Halburd R.G., Korhonen R.J.: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31, 463–478 (2006)MATHMathSciNetGoogle Scholar
  5. 5.
    Hayman W.K.: Picard values of meromorphic functions and their derivatives. Ann. Math. 70, 9–42 (1959)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hayman W.K.: Meromorphic Functions. Clarendon Press, Oxford (1964)MATHGoogle Scholar
  7. 7.
    Liu, K., Laine, I.: A note on value distribution of difference polynomials. Bull. Aust. Math. Soc. (to appear)Google Scholar
  8. 8.
    Laine I., Yang C.C.: Value distribution of difference polynomials. Proc. Jpn. Acad. Ser. A 83, 148–151 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Laine I., Yang C.C.: Clunie theorems for difference and q-difference polynomials. J. Lond. Math. Soc. (2) 76, 556–566 (2007)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Laine I.: Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin (1993)Google Scholar
  11. 11.
    Mohon’ho, A.Z.: The Nevanlinna characteristics of certain meromorphic functions, Teor. Funktsii Funktsional. Anal. i Prilozhen. 14, 83–87 (1971) (Russian)Google Scholar
  12. 12.
    Shimomura S.: Entire solutions of a polynomial difference equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 253–266 (1981)MATHMathSciNetGoogle Scholar
  13. 13.
    Yanagihara N.: Meromorphic solutions of some difference equations. Funkcial. Ekvac. 23, 309–326 (1980)MATHMathSciNetGoogle Scholar
  14. 14.
    Yang C.C., Yi H.X.: Uniqueness Theory of Meromorphic Functions. Kluwer, Dordrecht (2003)MATHGoogle Scholar

Copyright information

© Birkhäuser / Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of MathematicsNanchang UniversityNanchangPeople’s Republic of China
  2. 2.Department of MathematicsUniversity of JoensuuJoensuuFinland

Personalised recommendations