Results in Mathematics

, Volume 52, Issue 1–2, pp 41–50 | Cite as

Orthocentric Simplices and Biregularity

  • Allan L. Edmonds
  • Mowaffaq Hajja
  • Horst Martini


It is well known that the incenter of a Euclidean triangle lies on its Euler line connecting the centroid and the circumcenter if and only if the triangle is isosceles. The analogue of this result in higher dimensions is studied for orthocentric simplices. It is shown that the incenter of an orthocentric simplex of any dimension lies on its Euler line if and only if this simplex can be expressed as the join of two regular simplices, with all edges connecting the two corresponding components having the same length. These are precisely the orthocentric simplices whose group of isometries has as fixed point set a line (or a point, in the special case of a regular simplex).


Biregular simplex centroid circumcenter Euler line incenter isometry join kite orthocentric simplex rectangular simplex regular simplex 

Mathematics Subject Classification (2000).

Primary 52B12 Secondary 52B11 51M20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhaueser 2008

Authors and Affiliations

  • Allan L. Edmonds
    • 1
  • Mowaffaq Hajja
    • 2
  • Horst Martini
    • 3
  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA
  2. 2.Department of MathematicsYarmouk UniversityIrbidJordan
  3. 3.Faculty of MathematicsChemnitz University of TechnologyChemnitzGermany

Personalised recommendations