Skip to main content
Log in

A New Axial Constraint with Variable Angle for the Inversion of Gravity Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The axial constraint is an important constraint for the inversion of gravity data with which the dip information of the target geological bodies can be incorporated effectively. However, poor selection of the dip angles would inevitably lead to unreasonable inversion results. To reduce the errors caused by inappropriate angle estimation, this study proposes a new variable angle axial constraint for the inversion of gravity data. Moreover, to extend the utility of this new constraint, a method for employing multi-axial constraint is also introduced. The presented novel multi-axial constraint with a variable angle can be used to solve the inverse problems for complex geological bodies. We present a detailed iterative algorithm to solve the inverse problems with the presented constraints, in which the randomized singular value decomposition (RSVD) is used to solve the total objective function, and the generalized cross-validation (GCV) is utilized to estimate the regularization parameter. Numerous tests on synthetic gravity data with noise demonstrate that the inversion errors induced by inappropriate angle estimation can be greatly reduced by using the new constraints. Moreover, the presented methodology is successfully applied to a field data from the Morro do Engenho complex in the center of Brazil. This application also demonstrates the effectiveness of the proposed constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barbosa, V. C. F., & Silva, J. B. C. (1994). Generalized compact gravity inversion. Geophysics, 59(1), 57–68.

    Google Scholar 

  • Boulanger, O., & Chouteau, M. (2001). Constraints in 3D gravity inversion. Geophysical Prospecting, 49(2), 265–280.

    Google Scholar 

  • Carter-McAuslan, A., Lelièvre, P. G., & Farquharson, C. G. (2015). A study of fuzzy c-means coupling for joint inversion, using seismic tomography and gravity data test scenarios. Geophysics, 80(1), W1–W15.

    Google Scholar 

  • Chasseriau, P., & Chouteau, M. (2003). 3D gravity inversion using a model of parameter covariance. Journal of Applied Geophysics, 52(1), 59–74.

    Google Scholar 

  • Commer, M. (2011). Three-dimensional gravity modelling and focusing inversion using rectangular meshes. Geophysical Prospecting, 59, 966–979.

    Google Scholar 

  • Dutra, A. C., & Marangoni, Y. R. (2009). Gravity and magnetic 3D inversion of Morro do Engenho complex, Central Blazil. Journal of South American Earth Sciences, 28, 193–203.

    Google Scholar 

  • Fedi, M., Hansen, P. C., & Paoletti, V. (2005). Tutorial: Analysis of depth resolution in potential-field inversion. Geophysics, 70(6), A1–A11.

    Google Scholar 

  • Fullagar, P. K., Pears, G. A., & McMonnies, B. (2008). Constrained inversion of geologic surfaces pushing the boundaries. The Leading Edge, 27(1), 98–105.

    Google Scholar 

  • Geng, M. X., Hu, X. Y., Zhang, H. L., & Liu, S. (2018). 3D inversion of potential field data using a marginalizing probabilistic method. Geophysics, 83(5), G93–G106.

    Google Scholar 

  • Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge regression parameter. Technometrics, 21(2), 215–223.

    Google Scholar 

  • Guillen, A., & Menichetti, V. (1984). Gravity and magnetic inversion with minimization of a specific functional. Geophysics, 49(8), 1354–1360.

    Google Scholar 

  • Hansen, P. C. (1998). Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion: Society of Industrial and Applied Mathematics.

  • Last, B. J., & Kubik, K. (1983). Compact gravity inversion. Geophysics, 48(6), 713–721.

    Google Scholar 

  • Lelièvre, P. G., Farquharson, C. G., & Hurich, C. A. (2012). Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration. Geophysics, 77(1), K1–K15.

    Google Scholar 

  • Lelièvre, P. G., & Oldenburg, D. W. (2009). A comprehensive study of including structural orientation information in geophysical inversions. Geophysical Journal International, 178(2), 623–637.

    Google Scholar 

  • Li, Y. G., & Oldenburg, D. W. (1996). 3-D inversion of magnetic data. Geophysics, 61(2), 394–408.

    Google Scholar 

  • Li, Y. G., & Oldenburg, D. W. (1998). 3-D inversion of gravity data. Geophysics, 63(1), 109–119.

    Google Scholar 

  • Li, Y. G., & Oldenburg, D. W. (2000). Incorporating geological dip information into geophysical inversions. Geophysics, 65(1), 148–157.

    Google Scholar 

  • Li, Y. G., & Oldenburg, D. W. (2003). Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophysical Journal International, 152(2), 251–265.

    Google Scholar 

  • Liu, S., & Hu, X. Y. (2013). Sparsity imaging for potential field data based on orthogonal matching pursuit. In Near Surface Geophysics Asia Pacific Conference, Beijing, China.

  • Liu, S., Hu, X. Y., & Liu, T. Y. (2014). A stochastic inversion method for potential field data: Ant colony optimization. Pure and Applied Geophysics, 171(7), 1531–1555.

    Google Scholar 

  • Liu, Y., Lü, Q. T., Li, X. B., Qi, G., Zhao, J. H., Yan, J. Y., et al. (2015). 3D gravity inversion based on Bayesian method with model order reduction. Chinese Journal of Geophysics (in Chinese), 58(12), 4727–4739.

    Google Scholar 

  • Maag, E., & Li, Y. G. (2018). Discrete-valued gravity inversion using the guided fuzzy c-means clustering technique. Geophysics, 83(4), G59–G77.

    Google Scholar 

  • Montesinos, F. G., Arnoso, J., & Vieira, R. (2005). Using a genetic algorithm for 3-D inversuib of gravity data in Fuerteventura (Canary Islands). International Journal of Earth Sciences, 94(2), 301–316.

    Google Scholar 

  • Pilkington, M. (2009). 3D magnetic data-space inversion with sparseness constraints. Geophysics, 74(1), L7–L15.

    Google Scholar 

  • Portniaguine, O., & Zhdanov, M. S. (1999). Focusing geophysical inversion images. Geophysics, 63(4), 874–887.

    Google Scholar 

  • Rezaie, M., Moradzadeh, A., & Kalateh, A. N. (2017). Fast 3D inversion of gravity data using solution space priorconditioned lanczos bidiagonalization. Journal of Applied Geophysics, 136, 42–50.

    Google Scholar 

  • Shamsipour, P., Schetselaa, E., Bellefleur, G., & Marcotte, D. (2014). 3D stochastic inversion of potential field data using structural geologic constraints. Journal of Applied Geophysics, 111, 173–182.

    Google Scholar 

  • Silva Dias, F. J., Barbosa, V. C., & Silva, J. B. (2009). 3D gravity inversion through an adaptive-learning procedure. Geophysics, 74(3), I9–I21.

    Google Scholar 

  • Sun, J. J., & Li, Y. G. (2016). Joint inversion of multiple geophysical and petrophysical data using generalized fuzzy clustering algorithms. Geophysical Journal International, 208(2), 1201–1216.

    Google Scholar 

  • Tikhonov, A. N., Arsenin, V. I., & John, F. (1977). Solutions of ill-posed problems (p. 258). Washington, DC: Winston.

    Google Scholar 

  • Toushmalani, R., & Saibi, H. (2014). Fast 3D inversion of gravity data using Lanczos bidiagonalization method. Arabian Journal of Geosciences, 8(7), 4969–4981.

    Google Scholar 

  • Vatankhah, S., Renaut, R. A., & Ardestani, V. E. (2017). 3-D projected L1 inversion of gravity data using truncated unbiased predictive risk estimator for regularization parameter estimation. Geophysical Journal International, 210(3), 1872–1887.

    Google Scholar 

  • Vatankhah, S., Renaut, R. A., & Ardestani, V. E. (2018). A fast algorithm for regularized focused 3D inversion of gravity data using randomized singular-value decomposition. Geophysics, 83(4), G25–G34.

    Google Scholar 

  • Wahba, G. (1990). Spline models for observational data. In CBMS-NSF, regional Conference Series in Applied mathematics, 59, SIAM, Philadelphia, PA.

  • Wang, J., Meng, X. H., Guo, L. H., Chen, Z. X., & Li, F. (2014). A correlation-based approach for determining the threshold value of singular value decomposition filtering for potential field data denoising. Journal of Geophysics and Engineering, 11(5), 05007.

    Google Scholar 

  • Wang, J., Meng, X. H., & Li, F. (2015). A computationally efficient scheme for the inversion of large scale potential field data: Application to synthetic and real data. Computers and Geosciences, 85, 102–111.

    Google Scholar 

  • Wang, J., Meng, X. H., & Li, F. (2017). Fast nonlinear generalized inversion of gravity data with application to the three-dimensional crustal density structure of Sichuan basin, Southwest China. Pure and Applied Geophysics, 174, 4101–4117.

    Google Scholar 

  • Williams, N. C. (2006). Appling UBC-GIF potential field inversions in greenfields or brownfields exploration. Melbourne, Australia: ASEC.

    Google Scholar 

  • Williams, N. C. (2008). Geologically-constrained UBC-GIF gravity and magnetic inversions with examples from the Agnew-Wiluna greenstone belt, Western Australia. Ph. D. thesis, The University of British Columbia, Vancouver.

  • Xiang, H., & Zou, J. (2013). Regularization with randomized SVD for large-scale discrete inverse problems. Inverse Problems, 29(8), 085008.

    Google Scholar 

  • Yan, J. Y., Chen, X. B., Meng, G. X., Lü, Q. T., Deng, Z., Qi, G., et al. (2019). Concealed faults and intrusions identification based on multi-scale edge detection and 3D inversion of gravity and magnetic data: A case study in Qiongheba area, Xinjiang. Northwest China. Interpretation, 7(2), T331–T345.

    Google Scholar 

  • Yan, J. Y., Lü, Q. T., Chen, X. B., Qi, G., Liu, Y., Guo, D., et al. (2014). 3D lithologic mapping test based on 3D inversion of gravity and magnetic data: A case study in Lu-Zong ore concentration district, Anhui Province. Acta Petrologica Sinica, 30(4), 1041–1053.

    Google Scholar 

  • Zhdanov, M. S., Ellis, R., & Mukherjee, S. (2004). Three-dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics, 69(4), 925–937.

    Google Scholar 

Download references

Acknowledgements

This work was funded by (1) The National Natural Science Foundation of China (Grant numbers: 41804099 and 41530321); (2) the National Key R&D Program of China (Grant number: 2016YFC0303001); and (3) Special Project of China Geological Survey (Grant number: DD20191006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Meng or Jun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Meng, X., Wang, J. et al. A New Axial Constraint with Variable Angle for the Inversion of Gravity Data. Pure Appl. Geophys. 177, 3929–3942 (2020). https://doi.org/10.1007/s00024-020-02443-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02443-x

Keywords

Navigation