Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Geophysical Investigation of Mount Nemrut Stratovolcano (Bitlis, Eastern Turkey) Through Aeromagnetic Anomaly Analyses

  • 93 Accesses

Abstract

Quaternary Mount Nemrut stratovolcano, having a spectacular summit caldera and associated lakes, is located north of the Bitlis–Zagros suture zone, Eastern Turkey. Although much attention has been paid to its geology, morphology, history and biology, a detailed geophysical investigation has not been performed in this special region. Thus, we attempted to characterize the stratovolcano and the surroundings using total field aeromagnetic anomalies. Potential field data processing techniques helped us to interpret geologic sources causing magnetic signatures. Resulting image maps obtained from some linear transformations and a derivative-based technique revealed general compatibility between the aeromagnetic anomalies and the near-surface geology of the study area. Some high amplitude magnetic anomalies observed north of the Nemrut caldera rim are associated with the latest bimodal volcanic activity marked by lava fountains and comenditic-basaltic flows occurred along the rift zone. After minimizing the high-frequency effects, a pseudogravity-based three-dimensional inversion scheme revealed that the shallowest deep-seated sources are located about 3.0 km below the ground surface. Two-dimensional normalized full gradient solutions also exposed the depths of these anomaly sources, in good agreement with the inversion results. This first geophysical study performed through aeromagnetic anomalies clearly gave insights into some main magnetized structures of the Mount Nemrut stratovolcano.

This is a preview of subscription content, log in to check access.

Fig. 1

(modified from Okay and Tüysüz 1999; USGS 2010; Yiğitbaş et al. 2004; Ekinci et al. 2013; Ekinci and Yiğitbaş 2012, 2015)

Fig. 2

(http://www.koeri.boun.edu.tr/sismo/zeqdb/). NM Nemrut Mountain, SM Süphan Mountain, TM Tendürek Mountain, AM Ağrı Mountain. The map was generated by using Generic Mapping Tools (GMT) (Wessel and Smith 1995)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Afshar, A., Norouzi, G. H., Moradzadeh, A., Riahi, M. A., & Porkhial, S. (2017). Curie point depth, geothermal gradient and heat-flow estimation and geothermal anomaly exploration from integrated analysis of aeromagnetic and gravity data on the Sabalan Area, NW Iran. Pure and Applied Geophysics,174, 1133–1152.

  2. Aghajani, H., Moradzadeh, A., & Zeng, H. (2010). Detection of high-potential oil and gas fields using normalized full gradient of gravity anomalies: A case study in the Tabas Basin, Eastern Iran. Pure and Applied Geophysics,2011, 1851–1863.

  3. Arısoy, M. Ö. (2014). Edge detection of aeromagnetic data: A study from the City of Pisidia Antiocheia, Turkey. Archaeological Prospection,21, 293–300.

  4. Ates, A., & Kearey, P. (1993). Deep structure of the East Mendip Hills from gravity, aeromagnetic and seismic reflection data. Journal of Geological Society,150, 1055–1063.

  5. Ates, A., & Kearey, P. (1995). A new method for determining magnetization direction from gravity and magnetic anomalies: Application to the deep structure of the Worcester Graben. Journal of Geological Society,152, 561–566.

  6. Ateş, A., Kearey, P., & Tufan, S. (1999). New gravity and magnetic anomaly maps of Turkey. Geophysical Journal International,136, 499–502.

  7. Ates, A., Sevinc, A., Kadioglu, Y. K., & Kearey, P. (1997). Geophysical investigations of the deep structure of the Aydin—Milas region, southwest Turkey: Evidence for the possible extension of the Hellenic Arc. Israel Journal of Earth Sciences,46, 29–40.

  8. Aydar, E., Gourgaud, A., Ulusoy, İ., Digonnet, F., Labazuy, P., Sen, E., et al. (2003). Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: Evidences and possible impact areas of future eruption. Journal of Volcanology and Geothermal Research,123, 301–312.

  9. Aydemir, A. (2009). Tectonic investigation of central Anatolia, Turkey, using geophysical data. Journal of Applied Geophysics,68, 321–334.

  10. Aydin, A. (2007). Interpretation of gravity anomalies with the normalized full gradient (NFG) method and an example. Pure and Applied Geophysics,164, 2329–2344.

  11. Baldwin, R. T., & Langel, R. A. (1993). Tables and Maps of the DGRF 1985 and IGRF 1990. France: IAGA Bulletin.

  12. Balkaya, Ç., Ekinci, Y. L., Göktürkler, G., & Turan, S. (2017). 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm. Journal of Applied Geophysics,136, 372–386.

  13. Balkaya, Ç., Göktürkler, G., Erhan, Z., & Ekinci, Y. L. (2012). Exploration for a cave by magnetic and electrical resistivity surveys: Ayvacık Sinkhole Example, Bozdağ İzmir (Western Turkey). Geophysics,77, B135–B146.

  14. Baranov, V., & Naudy, H. (1964). Numerical calculation of the formulate of reduction to the magnetic pole. Geophysics,29, 67–79.

  15. Bektaş, Ö., Büyüksaraç, A., & Rozimant, K. (2013). 3D modelling and structural investigation of the Central Volcanics in Slovakia using magnetic data. Carpathian Journal of Earth and Environmental Sciences,8(4), 27–33.

  16. Bektaş, Ö., Ravat, D., Büyüksaraç, A., Bilim, F., & Ateş, A. (2007). Regional geothermal characterization of East Anatolia from aeromagnetic, heat flow and gravity data. Pure and Applied Geophysics,164, 975–998.

  17. Berezkin, V. M. (1967). Application of the total vertical gradient of gravity for determination of the depths to the sources of gravity anomalies. Exploration Geophysics,18, 69–79.

  18. Berezkin, V. M. (1973). Application of Gravity Exploration to Reconnaissance of Oil and Gas Reservoir. Moscow: Nedra Publishing House.

  19. Berezkin, V. M. (1988). Full Gradient Method in Geophysical Prospecting. Moscow: Nedra Publishing House.

  20. Bilim, F., Kosaroglu, S., Aydemir, A., & Buyuksarac, A. (2017). Thermal investigation in the Cappodocia Region, Central Anatolia-Turkey, analyzing curie point depth, geothermal gradient, and heat-flow maps from the aeromagnetic data. Pure and Applied Geophysics,174, 4445–4458.

  21. Blakely, R. J. (1988). Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada. Journal of Geophysical Research,93, 11817–11832.

  22. Blakely, R. J. (1995). Potential Theory in Gravity and Magnetic Applications. Cambridge: Cambridge University Press.

  23. Bott, M. H. P. (1960). The use of rapid digital computing methods for direct gravity interpretation of sedimantary basins. Royal Astronomical Society of Geophysics,3(1), 63–67.

  24. Boukerbout, H., Abtout, A., Gibert, D., Henry, B., Bouyahiaoui, B., & Derder, M. E. M. (2018). Identification of deep magnetized structures in the tectonically active Chlef area (Algeria) from aeromagnetic data using wavelet and ridgelet transforms. Journal of Applied Geophysics,154, 167–181.

  25. Bozkurt, E. (2001). Neotectonics of Turkey—a synthesis. Geodinamica Acta,14, 3–30.

  26. Büyüksaraç, A., Jordanova, D., Ateş, A., & Karloukovski, V. (2005). Interpretation of the gravity and magnetic anomalies of the Cappadocia Region, Central Turkey. Pure and Applied Geophysics,162, 2197–2213.

  27. Cordell, L., & Grauch, V. J. S. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In W. J. Hinze (Ed.), The Utility of Regional Gravity and Magnetic Anomaly Maps (pp. 181–197). Tulsa: Society of Exploration Geophysics.

  28. Cordell, L., & Henderson, R. G. (1968). Iterative three-dimensional solution of gravity anomaly data using a digital computer. Geophysics,33(4), 596–601.

  29. Çubukçu, H. E. (2008). Petrologic evolution of Nemrut Stratovolcano (Turkey): Peralkaline magmatism in a collisional domain. PhD. Thesis, Hacettepe University–Turkey.

  30. Çubukçu, H. E., Ulusoy, İ., Ersoy, O., Aydar, E., Gourgaud, A., & Herve, G. (2012). Mt. Nemrut Volcano (Eastern Turkey): Temporal petrological evolution. Journal of Volcanology and Geothermal Research,209–210, 33–60.

  31. Dhont, D., & Chorowicz, J. (2006). Review of the neotectonics of the Eastern Turkish-Armenian Plateau by geomorphic analysis of digital elevation model imagery. International Journal of Earth Sciences,95, 34–49.

  32. Ekinci, Y. L. (2017). A comparative study on computing horizontal derivatives of gravity data for geological contact mapping. Geological Bulletin of Turkey,60(2), 209–221.

  33. Ekinci, Y. L., Ertekin, C., & Yiğitbaş, E. (2013). On the effectiveness of directional derivative based filters on gravity anomalies for source edge approximation: Synthetic simulations and a case study from the Aegean Graben System (Western Anatolia, Turkey). Journal of Geophysics and Engineering,10(3), 035005.

  34. Ekinci, Y. L., Özyalın, Ş., Sındırgı, P., Balkaya, Ç., & Göktürkler, G. (2017). Inversion of analytic signal amplitude of magnetic data using differential evolution algorithm. Journal of Geophysics and Engineering,14, 1492–1508.

  35. Ekinci, Y. L., & Yiğitbaş, E. (2012). Geophysical approach to the igneous rocks in the Biga Peninsula (NW Turkey) based on airborne magnetic anomalies: Geological implications. Geodinamica Acta,25, 267–285.

  36. Ekinci, Y. L., & Yiğitbaş, E. (2015). Interpretation of gravity anomalies to delineate some structural features of Biga and Gelibolu peninsulas, and their surroundings (north-west Turkey). Geodinamica Acta,27, 300–319.

  37. Elysseieva, I. S., & Pašteka, R. (2019). Review paper: Historical development of the total normalized gradient method in profile gravity field interpretation. Geophysical Prospecting,67, 188–209.

  38. Ercan, T., Matsuda, J. I., Nagao, K., & Kita, I. (1995). Noble gas isotopic compositions in gas and water samples from Anatolia. In: Erler A, Ercan T, Bingöl E, Örçen S (Eds.), Geology of the Black Sea Region: Proceedings of International Symposium on the Geology of the Black Sea Region, Ankara, Turkey, General Directorate of Mineral Research and Exploration and the Chambers of Geological Engineers of Turkey, 197–206.

  39. Fedi, M., Florio, G., & Rapolla, A. (1998). 2.5D modelling of Somma-Vesuvius structure by aeromagnetic data. Journal of Volcanology and Geothermal Research,82, 239–247.

  40. Grant, F. S. (1985). Aeromagnetic, geology and ore environments, I. Magnetite in igneous, sedimentary and metamorphic rocks: An overview. Geoexploration,23, 303–333.

  41. Grauch, V. J. S., & Campbell, D. L. (1984). Does draping aeromagnetic data reduce terrain-induced effects? Geophysics,49, 75–80.

  42. Güleç, N., Hilton, D. R., & Mutlu, H. (2002). Helium isotope variations in Turkey: Relationship to tectonics, volcanism and recent seismic activities. Chemical Geology,187, 129–142.

  43. Güner, Y. (1984). Doğu Anadolu Kuvaterner volkanizması (Nemrut Yanardağı) (p. 77). Ankara: MTA Genel Müdürlüğü, Temel Araştırmalar Dairesi.

  44. Hinze, W. J., von Frese, R. R. B., & Saad, A. H. (2013). Gravity and magnetic exploration: Principles, practices and applications. Cambridge: Cambridge University Press.

  45. Karakhanian, A., Djrbashian, R., Trifonov, V., Philip, H., Arakelian, S., & Avagian, A. (2002). Holocene-historical volcanism and active faults as natural risk factors for Armenia and adjacent countries. Journal of Volcanology and Geothermal Research,113, 319–344.

  46. Karaoğlu, Ö., Elshaafi, A., Salah, M. K., Browning, J., & Gudmundsson, A. (2017). Large-volume lava flows fed by a deep magmatic reservoir at Ağrı Dağı (Ararat) volcano, Eastern Turkey. Bulletin of Volcanology,79, 15.

  47. Karaoğlu, Ö., Özdemir, Y., & Tolluoğlu, A. Ü. (2004). Physical evolution, emplacement of ignimbrite and characteristic eruption types of Nemrut Stratovolcano: a caldera system at Eastern Anatolia-Turkey. In: Proceedings of the 5th International Symposium on Eastern Mediterranean Geology.

  48. Karaoğlu, Ö., Özdemir, Y., Tolluoğlu, A. Ü., Karabıyıkoğlu, M., Köse, O., & Froger, J. (2005). Stratigraphy of the volcanic products around Nemrut caldera: implications for reconstruction of the caldera formation. Turkish Journal of Earth Sciences,14, 123–143.

  49. Kearey, P. (1991). A possible basaltic deep source of the south-central England magnetic anomaly. Journal of Geological Society,148, 775–780.

  50. Kearey, P., Brooks, M., & Hill, I. (2002). An introduction to geophysical exploration (3rd ed.). New Jersey: Blackwell Science Ltd.

  51. Kipfer, R., Aeschbach-Hertig, W., Baur, H., Hofer, M., Imboden, D. M., & Signer, P. (1994). Injection of mantle-type helium into Lake Van (Turkey): the clue for quantifying deep water renewal. Earth and Planetary Science Letters,125, 357–370.

  52. Koçyiğit, A., Yılmaz, A., Adamiac, S., & Kuloshvili, S. (2001). Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta,14, 177–195.

  53. Kurttaş, T., & Tezcan, L. (2018). Nemrut kaldera göllerinin su kaynakları potansiyeli. Süleyman Demirel University Journal of Natural and Applied Sciences,22, 823–831.

  54. Kuzucuoğlu, C., Şengör, A. M. C., & Çiner, A. (2019). The Tectonic Control on the Geomorphological Landscapes of Turkey. In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and landforms of Turkey. Cham: Springer.

  55. Longo, L. M., De Ritis, R., Ventura, G., & Chiappini, M. (2016). Analysis of the aeromagnetic anomalies of the Auca Mahuida Volcano, Patagonia, Argentina. Pure and Applied Geophysics,173, 3273–3290.

  56. MTA (General Directorate of Mineral Research and Exploration of Turkey), 2010. Airborne regional aeromagnetic anomaly map of Turkey. Ankara: MTA Publications, scale: 1/2000000.

  57. Nagao, K., Matsuda, J. I., Kita, I., & Ercan, T. (1989). Noble gas and carbon isotopic composition in Quaternary volcanic area in Turkey. Bulletin of Geomorphology,17, 101–110.

  58. Nicolosi, I., Caracciolo, F. D., Pignatelli, A., & Chiappini, M. (2019). Imaging the Bracciano caldera system by aeromagnetic data inversion (Sabatini Volcano District, Central Italy). Journal of Volcanology and Geothermal Research,388, 106680.

  59. Okay, A. I., & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. The Mediterranean Basins: Tertiary extension within the Alpine orogen. In: Durand B, Jolivet L, Horváth F, Séranne M (Eds.). Geological Society of London,156, 475–515.

  60. Oruç, B., & Keskinsezer, A. (2008). Detection of causative bodies by normalized full gradient of aeromagnetic anomalies from east Marmara region, NW Turkey. Journal of Applied Geophysics,65, 39–49.

  61. Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, A. Ü., & Güleç, N. (2006). Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): the most recent post-collisional volcanism in Turkey. Chemical Geology,226, 189–211.

  62. Pamukçu, O., Gönenç, T., Çırmık, A., Pamukçu, Ç., & Ertürk, N. (2019). Geothermal potential of Büyük Menderes Graben obtained by combined 2.5 D normalized full gradient results. Pure and Applied Geophysics,176, 5003–5026.

  63. Paoletti, V., Fedi, M., & Florio, G. (2017). The structure of the Ischia Volcanic Island from magnetic and gravity data. Annals of Geophysics,60, GM674.

  64. Pašteka, R. (2000). 2D semi-automated and environmental methods in gravimetry and magnetometry. Acta Geologica Universitatis Comenianae,55, 5–50.

  65. Patella, D., & Mauriello, P. (1999). The geophysical contribution to the safeguard of historical sites in active volcanic areas. The Vesuvius case-history. Journal of Applied Geophysics,41, 241–258.

  66. Pilkington, M., & Hildebrand, A. R. (2000). Three-dimensional magnetic imaging of the Chicxulub Crater. Journal of Geophysical Research,105, 23479–23491.

  67. Quarta, T., Fedi, M., & De Santis, A. (2000). Source ambiguity from an estimation of the scaling exponent of potential field power spectra. Geophysical Journal International,140, 311–323.

  68. Reynolds, J. M. (1997). An Introduction to applied and environmental geophysics. Chichester: Wiley.

  69. Sawires, R., & Aboud, E. (2019). Subsurface structural imaging of Ceboruco Volcano area, Nayarit, Mexico using high-resolution aeromagnetic data. Journal of Volcanology and Geothermal Research,371, 162–176.

  70. Secomandi, M., Paoletti, V., Aiello, G., Fedi, M., Marsela, E., Ruggieri, S., et al. (2003). Analysis of the magnetic anomaly field of the volcanic district of the Bay of Naples, Italy. Marine Geophysical Researches,24, 207–221.

  71. Şen, P. A., Temel, A., & Gourgaud, A. (2004). Petrogenetic modeling of Quaternary post-collisional volcanism: a case study of central and eastern Anatolia. Geological Magazine,141, 81–98.

  72. Şengör, A. M. C., Görür, N., & Şaroğlu, F. (1985). Strike-slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study. In K. T. Biddle & N. Christie-Blick (Eds.), Strike-slip deformation, Basin formation, and sedimentation. Texas: SEPM Society for Sedimentary Geology Publications.

  73. Şengör, A. M. C., Özeren, M. S., Keskin, M., Sakınç, M., Özbakır, A. D., & Kayan, İ. (2008). Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens. Earth-Science Reviews,90, 1–48.

  74. Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics,75, 181–241.

  75. Şerefhan. (1597). Şerefname: Kürt tarihi (translated from Arabic to Turkish by M. Emin Bozarslan, 1971). İstanbul: Ant Press.

  76. Seven, E., Mironov, V., & Akın, K. (2019). A new species of Eupithecia Curtis (Lepidoptera: Geometridae, Larentiinae). Zootaxa,4668, 443–447.

  77. Sharma, P. V. (1986). Geophysical methods in geology (2nd ed.). New York: Elsevier Science.

  78. Sheng, Z., & Xiaohong, M. (2015). Improved normalized full-gradient method and its application to the location of source body. Journal of Applied Geophysics,113, 86–91.

  79. Sındırgı, P., & Özyalın, Ş. (2019). Estimating the location of a causative body from a self-potential anomaly using 2D and 3D normalized full gradient and Euler deconvolution. Turkish Journal of Earth Sciences,28, 640–659.

  80. Sındırgı, P., Pamukçu, O., & Özyalın, Ş. (2008). Application of normalized full gradient method to self potential (SP) data. Pure and Applied Geophysics,165, 409–427.

  81. Soleimani, M., Aghajani, H., & Heydarinejad, S. (2018). Salt dome boundary detection in seismic image via resolution enhancement by the improved NFG method. Acta Geodaetica et Geophysica,53, 463–478.

  82. Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics,35, 293–302.

  83. Szitkar, F., & Dyment, J. (2015). Near-seafloor magnetics reveal tectonic rotation and deep structure at the TAG (Trans-Atlantic Geotraverse) hydrothermal site (Mid-Atlantic Ridge, 20°N). Geology,43, 87–90.

  84. Szitkar, F., Petersen, S., Tontini, F. C., & Cocchi, L. (2015). High-resolution magnetics reveal the deep structure of a volcanic-arc-related basalt-hosted hydrothermal site (Palinuro, Tyrrhenian Sea). Geochemistry, Geophysics, Geosystems,16, 1950–1961.

  85. Telford, W. M., Geldart, L. P., Sheriff, R. E., & Keys, D. A. (1990). Applied geophysics (2nd ed.). Cambridge: Cambridge University Press.

  86. Tivey, M. A., & Dyment, J. (2010). The Magnetic Signature of Hydrothermal Systems in Slow Spreading Environments. In P. A. Rona, C. W. Devey, J. Dyment, & B. J. Murton (Eds.), Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Florida: American Geophysical Union Publishing.

  87. Tivey, M. A., Rona, P. A., & Schouten, H. (1993). Reduced crustal magnetization beneath the active mound, TAG hydrothermal field, Mid-Atlantic Ridge, at 26°N. Earth and Planetary Science Letters,115, 101–115.

  88. Ulusoy, İ. (2008). Etude volcano-structurale du volcan Nemrut (Anatolie de l’Est Turquie) et risques naturels associés. PhD. Thesis, University of Clermont-Ferrand II, France & Hacettepe University, Turkey.

  89. Ulusoy, İ., Çubukçu, H. E., Aydar, E., Labazuy, P., Ersoy, O., Şen, E., et al. (2012). Volcanological evolution and caldera forming eruptions of Mt. Nemrut (Eastern Turkey). Journal of Volcanology and Geothermal Research,245–246, 21–39.

  90. Ulusoy, İ., Çubukçu, H. E., Mouralis, D., & Aydar, E. (2019). Nemrut Caldera and Eastern Anatolian Volcanoes: Fire in the Highlands. In: Ed. Kuzucuoğlu, C., Çiner, A., Kazancı, N. Landscapes and Landforms of Turkey, Springer International Publishing, New York. pp 589–599.

  91. Ulusoy, İ., Labazuy, P., Aydar, E., Ersoy, O., & Çubukçu, E. (2008). Structure of the Nemrut caldera (Eastern Anatolia, Turkey) and associated hydrothermal fluid circulation. Journal of Volcanology and Geothermal Research,174, 269–283.

  92. USGS, (2010). Porphyry copper assessment of the Tethys Region of Western and Southern Asia. Scientific Investigation Report, 2010–5090–V.

  93. Walls, C. C., & Hall, J. M. (1998). Interpretation of aeromagnetic anomalies in terms of hydrothermal alteration in Cretaceous normal polarity superchron extrusives of the Troodos, Cyprus, ophiolite. Journal of Geophysical Research,103, 30311–30321.

  94. Wessel, P., & Smith, W. H. F. (1995). New version of the Generic Mapping Tools. Eos Transactions, American Geophysical Union,76, 329.

  95. Xu, Y., Hao, T., Zhao, B., Lihong, Z., Zhang, L., Li, Z., et al. (2011). Investigation of igneous rocks in Huanghua depression, North China, from magnetic derivative methods. Journal of Geophysics and Engineering,8, 74–82.

  96. Yiğitbaş, E., Elmas, A., Sefunç, A., & Özer, N. (2004). Major neotectonic features of eastern Marmara region, Turkey: Development of the Adapazari-Karasu corridor and its tectonic significance. Geological Journal,39, 179–198.

  97. Yılmaz, Y., Güner, Y., & Şaroğlu, F. (1998). Geology of the Quaternary volcanic centres of the east Anatolia. Journal of Volcanology and Geothermal Research,85, 173–210.

  98. Yılmaz, Y., Şaroğlu, F., & Güner, Y. (1987). Initiation of the neomagmatism in East Anatolia. Tectonophsics,137, 177–199.

  99. Zeng, H., Meng, X., Yao, C., Li, X., Lou, H., Guang, Z., et al. (2002). Detection of reservoirs from normalized full gradient of gravity anomalies and its application to Shengli oil field, east China. Geophysics,67, 1138–1147.

  100. Zeng, H., Xu, D., & Tan, H. (2007). A model study for estimating optimum upward -continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, northeast China. Geophysics,72, I45–I50.

  101. Zurek, J., & Williams-Jones, G. (2013). The shallow structure of Kilauea caldera from high-resolution Bouguer gravity and total magnetic anomaly mapping: insights into progressive magma reservoir growth. Journal of Geophysical Research: Solid Earth,118, 3742–3752.

Download references

Acknowledgements

Thanks are due to Scientific Research Projects Foundation of Bitlis Eren University (Turkey) for supporting this study (Project No: BEBAP 2018.04). We are grateful to the reviewers for useful critiques and valuable contributions. The total field magnetic data of the studied region were obtained from MTA.

Author information

Correspondence to Yunus Levent Ekinci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ekinci, Y.L., Büyüksaraç, A., Bektaş, Ö. et al. Geophysical Investigation of Mount Nemrut Stratovolcano (Bitlis, Eastern Turkey) Through Aeromagnetic Anomaly Analyses. Pure Appl. Geophys. (2020). https://doi.org/10.1007/s00024-020-02432-0

Download citation

Keywords

  • Bitlis
  • Mount Nemrut stratovolcano
  • aeromagnetic anomalies
  • linear transformations
  • inversion
  • normalized full gradient