Advertisement

The Subsurface Structure on the CE-3 Landing Site: LPR CH-1 Data Processing by Shearlet Transform

  • Ling Zhang
  • Bin Hu
  • Zhuo JiaEmail author
  • Yi Xu
Article
  • 9 Downloads

Abstract

The Lunar penetrating radar (LPR) carried by Chang’E-3 (CE-3) mission is an important application of radar in lunar exploration. An opportunity of significance to detect the information of regolith and the subsurface structure on the landing site is offered by LPR aboard the Yutu rover. On the basis of a data processing flow, a low-frequency radar image has been available for mapping subsurface structure. The noise interfered data give a huge challenge for geological stratification and interpretation. To solve the limitation imposed by noise, we adopt the shearlet transform as a promising tool for data analysis and noise attenuation. The different distributions of the noise and signal in the shearlet domain decrease the difficulty of noise attenuation. To optimize the denosing strategy, we replace a local adaptive thresholding function with the conventional hard threshold. The quality of the processed data is improved, which is helpful for geological stratification and interpretation. Finally, by combining these data with the regional geology and previous research, especially the LPR data, we can provide an interpretation of the LPR CH-1.

Keywords

Lunar penetrating radar subsurface structure data processing denoising simulation 

Notes

Acknowledgements

We thank the open-source data in http://moon.bao.ac.cn. Data are hosted by National Astronomical Observatories, Chinese Academy of Sciences.

Author Contributions

LZ contributed to acquiring the data, interpreting the results, and writing the manuscript; BH contributed to evaluating the manuscript and checking the results; ZJ contributed to providing the idea of the proposed method, analyzing the data and outlining the manuscript; YX contributed to providing funding support and revising the article.

Funding

This work was supported by the Science and Technology Development Fund (FDCT) of Macau (Grant no. 0089/2018/A3, 121/2017/A3, 2018/2018/A2) and the National Natural Science Foundation of China (41574109).

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no competing interest.

References

  1. Bussey, D. B. J., Patterson, G. W., Schulze, R., Wahl, D. E., Nolan, M., Jensen, J. R., et al. (2016). Bistatic radar observations of the moon using the arecibo observatory and mini-rf on lro. Icarus,283, 2–19.Google Scholar
  2. Calla, O. P. N., Mathur, S., Jangid, M., & Gadri, K. L. (2015). Circular polarization characteristics of south polar lunar craters using chandrayaan-1 mini-sar and lro mini-rf. Earth, Moon and Planets,115, 1–18.CrossRefGoogle Scholar
  3. Candès, E., Demanet, L., Donoho, D., & Ying, L. (2006). Fast discrete curvelet transforms. Multiscale Modeling and Simulation,5, 861–899.CrossRefGoogle Scholar
  4. Chen, X., Deng, C., & Wang, S. (2010). Shearlet-based adaptive shrinkage threshold for image denoising. In The international conference on e-business and e-government IEEE.Google Scholar
  5. Dong, Z., Fang, G., Ji, Y., et al. (2016). Parameters and structure of lunar regolith in chang’e-3 landing area from lunar penetrating radar (lpr) data. Icarus,282, 40–46.CrossRefGoogle Scholar
  6. Easley, G., Labate, D., & Lim, W. (2008). Sparse directional image representations using the discrete shearlet transform. Applied and Computational Harmonic Analysis,25, 25–46.CrossRefGoogle Scholar
  7. Fa, W., Zhu, M. H., Liu, T., et al. (2015). Regolith stratigraphy at the Chang’E-3 landing site as seen by lunar penetrating radar. Geophysical Research Letters,16, 10–79.Google Scholar
  8. Fang, G. Y., Zhou, B., Ji, Y. C., et al. (2014). Lunar penetrating radar onboard the Chang’e-3 mission. Research in Astronomy and Astrophysics,14, 1607–1622.CrossRefGoogle Scholar
  9. Gao, Y., Dong, Z., Fang, G. Y., et al. (2016). The processing and analysis of lunar penetrating radar channel-1 data from Chang’E-3. Journal of Radars,4, 518–526.Google Scholar
  10. Guo, K., Labate, D., Lim, W., Weiss, G., & Wilson, E. (2004). Wavelets with composite dilations. Electronic Research Announcements in Mathematical Sciences,10, 78–87.CrossRefGoogle Scholar
  11. Guo, K., Labate, D., Lim, W., Weiss, G., & Wilson, E. (2006). Wavelets with composite dilations and their mra properties. Applied and Computational Harmonic Analysis,20, 202–236.CrossRefGoogle Scholar
  12. Häuser, S., & Steidl, G. (2014). Fast finite Shearlet transform. Mathematics. arXiv:1201.1773.
  13. Hu, B., Wang, D., Zhang, L., & Zeng, Z. (2019). Rock location and quantitative analysis for Regolith on Chang’e 3 landing site based on local similarity constraint. Remote Sensing,11, 530.CrossRefGoogle Scholar
  14. Irving, J., & Knight, R. (2006). Numerical modeling of ground-penetrating radar in 2-D using MATLAB. Computers and Geosciences,32, 1247–1258.CrossRefGoogle Scholar
  15. Lai, J., Xu, Y., Zhang, X., et al. (2016). Structural analysis of lunar subsurface with Chang'E-3 lunar penetrating radar. Planetary and Space Science,120, 96–102.CrossRefGoogle Scholar
  16. Li, C., Xing, S., Lauro, S. E., Su, Y., & Pettinelli, E. (2018). Pitfalls in GPR data interpretation: false reflectors detected in lunar radar cross sections by chang’e-3. IEEE Transactions on Geoscience and Remote Sensing,56, 99–109.Google Scholar
  17. Li, J., Zeng, Z., Liu, C., et al. (2017). A study on lunar regolith quantitative random model and lunar penetrating radar parameter inversion. IEEE Geoscience and Remote Sensing Letters,14, 1953–1957.CrossRefGoogle Scholar
  18. Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Computer Society,11, 674–693.Google Scholar
  19. Ono, T., Kumamoto, A., Nakagawa, H., Yamaguchi, Y., Oshigami, S., Yamaji, A., et al. (2009). Lunar radar sounder observations of subsurface layers under the nearside maria of the moon. Science,323, 909–912.CrossRefGoogle Scholar
  20. Phillips, R. J., Adams, G. F., Brown, W. E. J., Eggleton, R. E., Jackson, P., Jordan, R., et al. (1973). Apollo lunar sounder experiment. Apollo 17: Preliminary Science Report,330, 22.Google Scholar
  21. Qiao, L., Xiao, L., Zhao, J., Huang, Q., & Haruyama, J. (2014). Geological features and evolution history of sinus iridum, the moon. Planetary and Space Science,101, 37–52.CrossRefGoogle Scholar
  22. Qiao, L., Xiao, Z. Y., Zhao, J., & Xiao, L. (2016). Subsurface structures at the Chang’e-3 landing site: Interpretations from orbital and in situ imagery data. Journal of Earth Science,27, 707–715.CrossRefGoogle Scholar
  23. Spudis, P. D., Bussey, D. B. J., Lichtenberg, C., Marinelli, B., Nozette, S., et al. (2005). Mini-sar: an imaging radar experiment for the chandrayaan-1 mission to the moon. Current Science,96, 533–539.Google Scholar
  24. Su, Y., Fang, G. Y., Feng, J. Q., et al. (2014). Data processing and initial results of Chang’e-3. Lunar penetrating radar. Research in Astronomy and Astrophysics,14, 1623–1632.CrossRefGoogle Scholar
  25. Wang, K., Zeng, Z., Zhang, L., Xia, S., & Li, J. (1925). A compressive sensing-based approach to reconstructing Regolith structure from lunar penetrating radar data at the Chang’E-3 landing site. Remote Sensing,2018, 10.Google Scholar
  26. Xiao, L., Zhu, P., Fang, G., et al. (2015). A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission. Science,347, 1226–1229.CrossRefGoogle Scholar
  27. Yang, H., Wang, X., Niu, P., & Liu, Y. (2014). Image denoising using nonsubsampled shearlet transform and twin support vector machines. Neural Networks,57, 152–165.CrossRefGoogle Scholar
  28. Yuan, Y., Zhu, P., Zhao, N., Xiao, L., Garnero, E., Xiao, Z., et al. (2017). The 3d geological model around chang’e-3 landing site based on lunar penetrating radar channel-1 data: 3D geological model of ce-3 landing site. Geophysical Research Letters,44, 6553–6561.CrossRefGoogle Scholar
  29. Zhang, J., Yang, W., Hu, S., et al. (2015). Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu. Proceedings of the National academy of Sciences of the United States of America,112, 5342–5347.CrossRefGoogle Scholar
  30. Zhang, L., Zeng, Z., Li, J., et al. (2018a). Parameter estimation of lunar Regolith from lunar penetrating radar data. Sensors,18, 9.Google Scholar
  31. Zhang, L., Zeng, Z., Li, J., et al. (2018b). Simulation of the lunar regolith and lunar-penetrating radar data processing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,11, 1–9.CrossRefGoogle Scholar
  32. Zhang, L., Zeng, Z., Li, J., et al. (2019a). A story of Regolith told by lunar penetrating radar. Icarus,321, 148–160.CrossRefGoogle Scholar
  33. Zhang, J., Zeng, Z., Zhang, L., Lu, Q., & Wang, K. (2019b). Application of mathematical morphological filtering to improve the resolution of Chang’e-3 lunar penetrating radar data. Remote Sensing,11, 524.CrossRefGoogle Scholar
  34. Zhang, Z., Zhang, X., Yu, H., & Pan, X. (2010). Noise suppression based on a fast discrete curvelet transform. Journal of Geophysics and Engineering,7, 105–112.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Space Science Institute, Lunar and Planetary Science LaboratoryMacau University of Science and TechnologyMacauChina
  2. 2.College of Geo-exploration Science and TechnologyJilin UniversityChangchunChina
  3. 3.Ministry of Land and Resources Key Laboratory of Applied GeophysicsChangchunChina

Personalised recommendations