Advertisement

Probabilistic Tsunami Hazard Assessment for Local and Regional Seismic Sources Along the Pacific Coast of Central America with Emphasis on the Role of Selected Uncertainties

  • Natalia ZamoraEmail author
  • Andrey Y. Babeyko
Article
  • 39 Downloads

Abstract

Historical data indicate that the Middle America subduction zone represents the primary tsunamigenic source that affects the Central American coastal areas. In recent years, the tsunami potential in the region has mainly been assessed using maximum credible earthquakes or historical events showing moderate tsunami potential. However, such deterministic scenarios are not provided with their adequate probability of occurrence. In this study, earthquake rates have been combined with tsunami numerical modeling in order to assess probabilistic tsunami hazard posed by local and regional seismic sources. The common conceptual framework for the probabilistic seismic hazard assessment has been adapted to estimate the probabilities of exceeding certain tsunami amplitudes along the Central American Pacific coast. The study area encompasses seismic sources related to the Central America, Colombia and Ecuador subduction zones. In addition to the classical subduction inter-plate events, this study also incorporates sources at the outer rise, within the Caribbean crust as well as intra-slab sources. The study yields conclusive remarks showing that the highest hazard is posed to northwestern Costa Rica, El Salvador and the Nicaraguan coast, southern Colombia and northern Ecuador. In most of the region it is 50 to 80% likely that the tsunami heights will exceed 2 m for the 500 year time exposure (T). The lowest hazard appears to be in the inner part of the Fonseca Gulf, Honduras. We also show the large dependence of PTHA on model assumptions. While the approach taken in this study represents a thorough step forward in tsunami hazard assessment in the region, we also highlight that the integration of all possible uncertainties will be necessary to generate rigorous hazard models required for risk planning.

Keywords

Seismic segmentation earthquake rates tsunami hazard Central America Colombia Ecuador subduction zones 

Notes

Acknowledgements

This study was possible thanks to the financial support to NZ from the Helmholtz Association and the GeoSim Program and the GeoForschungsZentrum (GFZ-Potsdam). Deep thanks to B. Benito, Y. Torres, A. Rivas and R. García at the Politechnic of Madrid (UPM) for hosting NZ during the Central American PSHA Workshop held in 2011 and for the discussions on the probabilistic framework. Special acknowledge to W. Rojas, E. Molina, E. Camacho for discussions related to Central American seismic catalog and seismic rates of the region. M. Fernández is acknowledged for discussions of the Central America tsunami catalog. A. Hoechner is acknowledged for the fruitful discussions about PTHA uncertainties. M.Sørensen and L. Matias are acknowledged for comments on a first stage of the study. Most figures were drawn using the GMT software Wessel et al. (2013) and R-project (R Core Team 2014). We strongly appreciate the comments and suggestions of two anonymous reviewers and the guest editor of the special volume E. Okal.

Supplementary material

24_2019_2372_MOESM1_ESM.pdf (8.9 mb)
Supplementary material 1 (pdf 9084 KB)
24_2019_2372_MOESM2_ESM.pdf (5 mb)
Supplementary material 2 (pdf 5114 KB)

References

  1. Aki, K. (1966). Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. Bulletin of the Earthquake Research Institute, 44, 73–88.Google Scholar
  2. Alvarado, D., DeMets, C., Tikoff, B., Hernandez, D., Wawrzyniec, T., Pullinger, C., et al. (2010). Forearc motion and deformation between El Salvador and Nicaragua: GPS, seismic, structural, and paleomagnetic observations. Lithosphere, 3(1), 3–21.CrossRefGoogle Scholar
  3. Alvarado, G. E., Benito, B., Staller, A., Climent, Á., Camacho, E., Rojas, W., et al. (2017). The new Central American seismic hazard zonation: Mutual consensus based on up to day seismotectonic framework. Tectonophysics, 721, 462–476.CrossRefGoogle Scholar
  4. Álvarez-Gómez, J. A., Meijer, P. T., Martínez-Díaz, J. J., & Capote, R. (2008). Constraints from finite element modeling on the active tectonics of northern Central America and the Middle America Trench. Tectonics, 27(1), TC1008.CrossRefGoogle Scholar
  5. Álvarez-Gómez, J. A., Gutiérrez-Gutiérrez, O. Q., Aniel-Quiroga, I., & Gonzlez, M. (2012). Tsunamigenic potential of outer-rise normal faults at the Middle America trench in Central America. Tectonophysics, 574–575, 133–143.CrossRefGoogle Scholar
  6. Álvarez-Gómez, J. A., Aniel-Quiroga, I., Gutiérrez-Gutiérrez, O. Q., Larreynaga, J., González, M., Castro, M., et al. (2013). Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models. Natural Hazards and Earth System Sciences, 13(11), 2927–2939.CrossRefGoogle Scholar
  7. Basili, R., Tiberti, M. M., Kastelic, V., Romano, F., Piatanesi, A., Selva, J., et al. (2013). Integrating geologic fault data into tsunami hazard studies. Natural Hazards and Earth System Sciences, 13(4), 1025–1050.CrossRefGoogle Scholar
  8. Beauval, C., Yepes, H., Palacios, P., Segovia, M., Alvarado, A., Font, Y., et al. (2013). An earthquake catalog for seismic hazard assessment in Ecuador. Bulletin of the Seismological Society of America, 103(2A), 773–786.CrossRefGoogle Scholar
  9. Becker, J., Sandwell, D., Smith, W., Braud, J., Binder, B., Depner, J., et al. (2009). Global bathymetry and elevation data at 30 Arc Seconds Resolution: SRTM plus. Marine Geodesy, 32(4), 355–371.CrossRefGoogle Scholar
  10. Benito, M. B., Lindholm, C., Camacho, E., Climent, A., Marroquin, G., Molina, E., et al. (2012). A new evaluation of seismic hazard for the Central America region. Bulletin of the Seismological Society of America, 102(2), 504–523.CrossRefGoogle Scholar
  11. Bilek, S. L., & Lay, T. (1999). Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature, 400, 443–446.CrossRefGoogle Scholar
  12. Blaser, L., Kruger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society of America, 100(6), 2914–2926.CrossRefGoogle Scholar
  13. Borrero, J. C., Kalligeris, N., Lynett, P. J., Fritz, H. M., Newman, A. V., & Convers, J. A. (2014). Observations and modeling of the August 27, 2012 earthquake and tsunami affecting El Salvador and Nicaragua. Pure and Applied Geophysics, 171(12), 3421–3435.CrossRefGoogle Scholar
  14. Brizuela, B., Armigliato, A., & Tinti, S. (2014). Assessment of tsunami hazards for the Central American Pacific coast from southern Mexico to northern Peru. Natural Hazards and Earth System Science, 14(7), 1889–1903.CrossRefGoogle Scholar
  15. Burroughs, S. M., & Tebbens, S. F. (2005). Power-law scaling and probabilistic forecasting of tsunami runup heights. Pure and Applied Geophysics, 162(2), 331–342.CrossRefGoogle Scholar
  16. Chacón-Barrantes, S., & Gutiérrez-Echeverría, A. (2017). Tsunamis recorded in tide gauges at Costa Rica Pacific coast and their numerical modeling. Natural Hazards, 89(1), 295–311.CrossRefGoogle Scholar
  17. Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.Google Scholar
  18. Correa-Mora, F., DeMets, C., Alvarado, D., Turner, H. L., Mattioli, G., Hernandez, D., et al. (2009). GPS-derived coupling estimates for the Central America subduction zone and volcanic arc faults: El Salvador. Honduras and Nicaragua, Geophysical Journal International, 179, 1279–1291.CrossRefGoogle Scholar
  19. Cosentino, P., Ficarra, V., & Luzio, D. (1977). Truncated exponential frequency-magnitude relationship in earthquake statistics. Bulletin of the Seismological Society of America, 67(6), 1615–1623.Google Scholar
  20. de Boer, J. Z., Defant, M. J., Stewart, R. H., Restrepo, J. F., Clark, L. F., & Ramirez, A. H. (1988). Quaternary calc-alkaline volcanism in western Panama: Regional variation and implication for the plate tectonic framework. Journal of South American Earth Sciences, 1(3), 275–293.CrossRefGoogle Scholar
  21. de Boer, J. Z., Drummond, M. S., Bordelon, M. J., Defant, M. J., Bellon, H., & Maury, R. C. (1995). Cenozoic magmatic phases of the Costa Rican island arc (Cordillera de Talamanca). Geological Society of America Special Papers, 295, 35–56.CrossRefGoogle Scholar
  22. DeMets, C. (2001). A new estimate for present-day Cocos-Caribbean plate motion: Implications for slip along the Central American volcanic arc. Geophysical Journal International, 28(21), 4043–4046.Google Scholar
  23. DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80.CrossRefGoogle Scholar
  24. Ebel, J., & Kafka, A. (1999). A Monte Carlo Approach to Seismic Hazard Analysis. Bulletin of the Seismological Society of America, 89(4), 854–866.Google Scholar
  25. Ekström, G., Nettles, M., & Dziewoński, A. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9.CrossRefGoogle Scholar
  26. Fernández, M., Ortiz-Figueroa, M., & Mora, R. (2004). Tsunami hazards in El Salvador. Geological Society of America Special Paper, 375, 435–444.Google Scholar
  27. Franco, A., Lasserre, C., Lyon-Caen, H., Kostoglodov, V., Molina, E., Guzman-Speziale, M., et al. (2012). Fault kinematics in northern Central America and coupling along the subduction interface of the Cocos Plate, from GPS data in Chiapas (Mexico), Guatemala and El Salvador. Geophysical Journal International, 189(3), 1223–1236.CrossRefGoogle Scholar
  28. Gailler, A., Hbert, H., Schindel, F., & Reymond, D. (2017). Coastal amplification laws for the French Tsunami warning center: Numerical modeling and fast estimate of tsunami wave heights along the French Riviera. Pure and Applied Geophysics, 175, 1–16.Google Scholar
  29. Geist, E. L. (2009). Phenomenology of tsunamis: Statistical properties from generation to runup. Advances in Geophysics, 51, 107–169.CrossRefGoogle Scholar
  30. Geist, E. L., & Parsons, T. (2006). Probabilistic analysis of tsunami hazards. Natural Hazards, 37(3), 277–314.CrossRefGoogle Scholar
  31. Glimsdal, S., Løvholt, F., Harbitz, C. B., Romano, F., Lorito, S., Orefice, S., et al. (2019). A new approximate method for quantifying tsunami maximum inundation height probability. Pure and Applied Geophysics, 176, 3227–3246.CrossRefGoogle Scholar
  32. González, F. I., Geist, E. L., Jaffe, B., Kânolu, U., Mofjeld, H., Synolakis, C. E., et al. (2009). Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research, 114(C11), C11023.CrossRefGoogle Scholar
  33. Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G., et al. (2017). Probabilistic tsunami hazard analysis: Multiple sources and global applications. Reviews of Geophysics, 55(4), 1158–1198.CrossRefGoogle Scholar
  34. Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1. 0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth, 117(B1), B01302.CrossRefGoogle Scholar
  35. Hébert, H., & Schindelé, F. (2015). Tsunami impact computed from offshore modeling and coastal amplification laws: Insights from the 2004 Indian Ocean tsunami. Pure and Applied Geophysics, 172(12), 3385.CrossRefGoogle Scholar
  36. Hoechner, A., Babeyko, A., & Zamora, N. (2016). Probabilistic tsunami hazard assessment for the Makran region with focus on maximum magnitude assumption. Natural Hazards and Earth System Science, 16, 1339–1350.CrossRefGoogle Scholar
  37. Horspool, N., Pranantyo, I., Griffin, J., Latief, H., Natawidjaja, D. H., Kongko, W., et al. (2014). A probabilistic tsunami hazard assessment for Indonesia. Natural Hazards and Earth System Sciences, 14(11), 3105–3122.CrossRefGoogle Scholar
  38. Jamelot, A., & Reymond, D. (2015). New tsunami forecast tools for the French polynesia tsunami warning system. Pure and Applied Geophysics, 172, 791–804.CrossRefGoogle Scholar
  39. Kamigaichi, O. (2009). Tsunami forecasting and warning. In R. A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science SE-568 (pp. 9592–9618). New York: Springer.CrossRefGoogle Scholar
  40. Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6(5), 346–359.CrossRefGoogle Scholar
  41. Kijko, A., & Smit, A. (2012). Extension of the Aki-Utsu b-value estimator for incomplete catalogs. Bulletin of the Seismological Society of America, 102(3), 1283–1287.CrossRefGoogle Scholar
  42. Knopoff, L., Kagan, Y. Y., & Knopoff, R. (1982). b Values for foreshocks and aftershocks in real and simulated earthquake sequences. Bulletin of the Seismological Society of America, 72(5), 1663–1676.Google Scholar
  43. Kobayashi, D., LaFemina, P., Geirsson, H., Chichaco, E., Abrego, A. A., Mora, H., et al. (2014). Kinematics of the western Caribbean: Collision of the Cocos Ridge and upper plate deformation. Geochemistry, Geophysics, Geosystems, 15, 1671–1683.CrossRefGoogle Scholar
  44. LaFemina, P. C., Dixon, T. H., & Strauch, W. (2002). Bookshelf faulting in Nicaragua. Geology, 30(8), 751–754.CrossRefGoogle Scholar
  45. LaFemina, P., Dixon, T. H., Govers, R., Norabuena, E., Turner, H., Saballos, A., et al. (2009). Fore-arc motion and Cocos Ridge collision in Central America. Geochemistry, Geophysics, Geosystems, 10(5), 1–21.CrossRefGoogle Scholar
  46. Li, L., Switzer, A. D., Chan, C.-H., Wang, Y., Weiss, R., & Qiu, Q. (2016). How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment: A case study in the South China Sea. Journal of Geophysical Research: Solid Earth, 121, 6250–6272.Google Scholar
  47. Lindholm, C., Redondo, C. A., & Bungum, H. (2004). Two earthquake databases for Central America. Geological Society of America Special Papers, 375, 357–362.Google Scholar
  48. Lonsdale, P., & Klitgord, J. (1978). Structure and tectonic history of the eastern Panama Basin. Geological Society of America Bulletin, 89(7), 981–999.CrossRefGoogle Scholar
  49. Lorito, S., Tiberti, M. M., Basili, R., Piatanesi, A., & Valensise, G. (2008). Earthquake-generated tsunamis in the Mediterranean Sea: Scenarios of potential threats to Southern Italy. Journal of Geophysical Research: Solid Earth, 113(B1), B1301.CrossRefGoogle Scholar
  50. Lorito, S., Selva, J., Basili, R., Romano, F., Tiberti, M. M., & Piatanesi, A. (2015). Probabilistic hazard for seismically induced tsunamis: Accuracy and feasibility of inundation maps. Geophysical Journal International, 200(1), 574–588.CrossRefGoogle Scholar
  51. Løvholt, F., Glimsdal, S., Harbitz, C. B., Zamora, N., Nadim, F., Peduzzi, P., et al. (2012). Tsunami hazard and exposure on the global scale. Earth-Science Reviews, 110, 58–73.CrossRefGoogle Scholar
  52. Løvholt, F., Khn, D., Bungum, H., Harbitz, C. B., & Glimsdal, S. (2012). Historical tsunamis and present tsunami hazard in eastern Indonesia and the southern Philippines. Journal of Geophysical Research: Solid Earth, 117(B9), B09310.CrossRefGoogle Scholar
  53. Lyon-Caen, H., Barrier, E., Lasserre, C., a. Franco, I., Arzu, L., Chiquin, M., et al. (2006). Kinematics of the North AmericanCaribbean-Cocos plates in Central America from new GPS measurements across the Polochic-Motagua fault system. Geophysical Research Letters, 33(19), L19309.CrossRefGoogle Scholar
  54. Matias, L. M., Cunha, T., Annunziato, A., Baptista, M. a, & Carrilho, F. (2013). Tsunamigenic earthquakes in the Gulf of Cadiz: Fault model and recurrence. Natural Hazards and Earth System Science, 13(1), 1–13.CrossRefGoogle Scholar
  55. Matthews, M. V., Ellsworth, W. L., & Reasenberg, P. A. (2002). A Brownian model for recurrent earthquakes. Bulletin of the Seismological Society of America, 92(6), 2233–2250.CrossRefGoogle Scholar
  56. McCaffrey, R. (2008). Global frequency of magnitude 9 earthquakes. Geology, 36(3), 263.  https://doi.org/10.1130/G24402A.1.CrossRefGoogle Scholar
  57. McGuire, R. (1976). FORTRAN computer program for seismic risk analysis. In Technical report, U.S. Geol. Surv., Open File Rep. No. 76–67.Google Scholar
  58. Murphy, S., Scala, A., Herrero, A., Lorito, S., Festa, G., Trasatti, E., et al. (2016). Shallow slip amplification and enhanced tsunami hazard unravelled by dynamic simulations of mega-thrust earthquakes. Science Reports, 6, 1–12.CrossRefGoogle Scholar
  59. NGDC/WDS. (2017). National geophysical data center, world data service, global historical tsunami database, national geophysical data center, NOAA. http://www.ngdc.noaa.gov/hazard/tsu_db.shtml/. Accessed 31 Dec 2017.
  60. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  61. Okal, E. A., Borrero, J. C., & Synolakis, C. E. (2006). Evaluation of tsunami risk from regional earthquakes at Pisco, Peru. Bulletin of the Seismological Society of America, 96(5), 1634–1648.CrossRefGoogle Scholar
  62. Ortiz, M., Fernández Arce, M., & Rojas, W. (2001). Análisis de riesgo de inundación por tsunamis en Puntarenas, Costa Rica. GEOS, 21(2), 108–113.Google Scholar
  63. Parsons, T., & Geist, E. (2009a). Tsunami probability in the Caribbean region. Pure and Applied Geophysics, 165(11–12), 2089–2116.Google Scholar
  64. Parsons, T., & Geist, E. L. (2009b). Is there a basis for preferring characteristic earthquakes over a Gutenberg-Richter distribution in probabilistic earthquake forecasting? Bulletin of the Seismological Society of America, 99(3), 2012–2019.CrossRefGoogle Scholar
  65. Protti, M., McNally, K., Pacheco, J., Gonzlez, V., Montero, C., Segura, J., et al. (1995). The March 25, 1990 (Mw = 7.0, ML = 6.8), earthquake at the entrance of the Nicoya Gulf, Costa Rica: Its prior activity, foreshocks, aftershocks, and triggered seismicity. Journal of Geophysical Research: Solid Earth, 100(B10), 20345–20358.CrossRefGoogle Scholar
  66. R Core Team. (2014). R: A Language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.
  67. Rabinovich, A. B., Candella, R. N., & Thomson, R. E. (2013). The open ocean energy decay of three recent trans-Pacific tsunamis. Geophysical Research Letters, 40, 3157–3162.CrossRefGoogle Scholar
  68. Rojas, W., Camacho, E., Marroquin, G., Molina, E., & Benito, M. B. (2013). Evolution of the Earthquake Catalog in Central America. In Meeting of the Americas, AGU, Mexico. S52A08, Number AGU Meeting of the Americas.Google Scholar
  69. Rojas, W., Bungum, H., & Lindholm, C. (1993). Historical and recent earthquakes in Central America. Revista Geologica de America Central, 16, 5–22.Google Scholar
  70. Rubinstein, R. Y. & Kroese, D. P. (2008). Simulation and the Monte Carlo Method (2nd editio ed.). Wiley.Google Scholar
  71. Salazar, W., Brown, L., Hernández, W., & Guerra, J. (2013). An earthquake catalogue for El Salvador and neighboring Central American countries (1528–2009) and its implication in the seismic Hazard Assessment. Journal of Civil Engineering and Architecture, 7(8), 1018–1045.Google Scholar
  72. Sallarés, V., Flueh, E., Charvis, P., & Bialas, J. (2003). Seismic structure of Cocos and Malpelo Volcanic ridges and implications for hot spot-ridge interaction. Journal of Geophysical Research, 108(B12), 2564.  https://doi.org/10.1029/2003JB002431.CrossRefGoogle Scholar
  73. Satake, K. (1994). Mechanism of the 1992 Nicaragua tsunami earthquake. Geophysical Research Letters, 21(23), 2519–2522.CrossRefGoogle Scholar
  74. Schaefer, A., Daniell, J., &  Wenzel, F. (2015). State-of-the-Art in Tsunami Risk Modelling for a global perspective. In EGU General Assembly Conference Abstracts, Volume 17 of EGU General Assembly Conference Abstracts, pp. 5239.Google Scholar
  75. Scholz, C. H., & Small, C. (1997). The effect of seamount subduction on seismic coupling. Geology, 25, 487–490.  https://doi.org/10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2.CrossRefGoogle Scholar
  76. Sørensen, M. B., Spada, M., Babeyko, A., Wiemer, S., & Grünthal, G. (2012). Probabilistic tsunami hazard in the Mediterranean Sea. Journal of Geophysical Research, 117(B1), B01305.CrossRefGoogle Scholar
  77. Stein, S., Salditch, L., Brooks, E., Spencer, B., & Campbell, M. (2017). Is the Coast Toast? Exploring Cascadia earthquake probabilities. GSA Today, 27, 6–7.CrossRefGoogle Scholar
  78. Stepp, J.C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In Proc. of the 1st Int. Conf. on Microzonazion, Seattle, Volume 2, pp. 897–910.Google Scholar
  79. Stirling, M., & Gerstenberger, M. (2010). Ground motion-based testing of seismic hazard models in New Zealand. Bulletin of the Seismological Society of America, 100(4), 1407–1414.CrossRefGoogle Scholar
  80. Thio, H. K., Somerville, P., & Ichinose, G. (2007). Probabilistic analysis of strong ground motion and tsunami hazards in Southeast Asia. Journal of Earthquake and Tsunami, 01(02), 1–19.CrossRefGoogle Scholar
  81. USGS (2017). USGS ComCat catalog. United States Geological Survey. https://earthquake.usgs.gov/earthquakes/search/. Accessed 20 Jan 2017.
  82. van Stiphout, T., Schorlemmer, D., & Wiemer, S. (2011). The Effect of Uncertainties on Estimates of Background Seismicity Rate. Bulletin of the Seismological Society of America, 101(2), 482–494.CrossRefGoogle Scholar
  83. VonHuene, R., Ranero, C. R., & Watts, P. (2004). Tsunamigenic slope failure along the Middle America Trench in two tectonic settings. Marine Geology, 203, 303–317.CrossRefGoogle Scholar
  84. Ward, S. N. (2001). Landslide tsunami. Journal of Geophysical Research, 106, 11201–11216.CrossRefGoogle Scholar
  85. Ward, S. N., & Asphaug, E. (2000). Asteroid impact tsunami: A probabilistic hazard assessment. Icarus, 145, 64–78.CrossRefGoogle Scholar
  86. Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic mapping tools: Improved version released. Eos, Transactions American Geophysical Union, 94, 45.CrossRefGoogle Scholar
  87. Wiemer, S., Giardini, D., Fäh, D., Deichmann, N., & Sellami, S. (2008). Probabilistic seismic hazard assessment of Switzerland: Best estimates and uncertainties. Journal of Seismology, 13(4), 449–478.CrossRefGoogle Scholar
  88. Ye, L., Lay, T., & Kanamori, H. (2013). Large earthquake rupture process variations on the Middle America megathrust. Earth and Planetary Science Letters, 381, 147–155.  https://doi.org/10.1016/j.epsl.2013.08.042.CrossRefGoogle Scholar
  89. Zamora, N. (2016). Probabilistic tsunami hazard analysis for Central America with focus on uncertainties. Phd dissertation, Postdam University.Google Scholar
  90. Zamora, N., & Babeyko, A. Y. (2015). Tsunami potential from local seismic sources along the southern Middle America Trench. Natural Hazards, 80(2), 901–934.  https://doi.org/10.1007/s11069-015-2004-3.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Center for Integrated Disaster Risk Management (CIGIDEN), CONICYT/FONDAP/15110017SantiagoChile
  2. 2.CYCLO Millennium Nucleus The Seismic Cycle Along Subduction ZonesValdiviaChile
  3. 3.GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations