Modeling of Raindrop Size Distribution Observed Using Micro Rain Radar Over Darjeeling (27.05oN, 88.26oE): An Eastern Himalayan Region

  • Shyam MehtaEmail author
  • Soumendra Singh
  • Amitabha Mitra
  • Sanjay K. Ghosh
  • Sibaji Raha
  • S. K. Mehta


Micro rain radar (MRR-2) provides the measurement of the drop size distribution DSD with altitude and rain rates. In this paper, we show a new form of gamma drop size distribution (DSD) model. MRR-2 is based on the principle of Radar spectrum measurement of continuous-wave of frequency modulation. DSD measurements for the rain rates ~ 0–25 mm/h and the height from 150 to 2000 m during the south-west monsoon season for the period 2009 and 2010 are used in this study. From the variance of DSD (\(\sigma^{2}\)) and mass-weighted mean drop diameter as well as after the mathematical calculation, two parameters (\(\varLambda\) and µ) are obtained for the use of lower-order moments. Both the moments are utilized for the best suitable of gamma DSD. Measured DSD for the different rain rates and different altitudes below the melting layer height (~ 2–3 km) compared among the exponential, lognormal and gamma DSD model over Darjeeling in the Eastern Himalaya. The correlation between best fit measured DSD and gamma distribution indicate that they correlate well for both lower and higher order moments for the heights 150 m and 1050 m. Whereas they correlated only for higher order moments for the 450 m, 1500 m and 1950 m. Thus, it is found that the observed pattern of DSD agrees well to the gamma DSD model.


Rain drop size distribution (DSD) moment expression rainfall rate with height 



This work is fully supported by Intensification of Research in High Priority Area (IRHPA), Department of Science and Technology (DST), Govt. of India. We thank technical team members of the IRHPA project at Bose Institute for taking the MRR observations. First author (SM) is thankful to Department of Science and Technology, Govt. of India for providing the fellowship under IRHPA project. Authors thank to SRM HPCC for processing the Global 30-arc-second topography data.


  1. Adimula, I. A., & Ajayi, G. O. (1996). Variations in raindrop size distribution and specific attenuation due to rain in Nigeria. Annales des télécommunications (pp. 87–93). Berlin: Springer.Google Scholar
  2. Atlas, D., Srivastava, R. C., & Sekhon, R. S. (1973). Doppler radar characteristics of precipitation at vertical incidence. Reviews of Geophysics,11(1), 1–35.CrossRefGoogle Scholar
  3. Atlas, D., Ulbrich, C. W., & Meneghini, R. (1984). The multiparameter remote measurement of rainfall. Radio Science,19(1), 3–22.CrossRefGoogle Scholar
  4. Bringi, V. N., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W. L., & Schoenhuber, M. (2003). Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. Journal of the Atmospheric Sciences,60(2), 354–365.CrossRefGoogle Scholar
  5. Chandrasekar, V., & Bringi, V. N. (1987). Simulation of radar reflectivity and surface measurements of rainfall. Journal of Atmospheric and Oceanic Technology,4(3), 464–478.CrossRefGoogle Scholar
  6. Chu, Y. H., & Su, C. L. (2008). An investigation of the slope–shape relation for gamma raindrop size distribution. Journal of Applied Meteorology and Climatology,47(10), 2531–2544.CrossRefGoogle Scholar
  7. Feingold, G., & Levin, Z. (1986). The lognormal fit to raindrop spectra from frontal convective clouds in Israel. Journal of Climate and Applied Meteorology,25(10), 1346–1363.CrossRefGoogle Scholar
  8. Gunn, R., & Kinzer, G. D. (1949). The terminal velocity of fall for water droplets in stagnant air. Journal of Meteorology,6(4), 243–248.CrossRefGoogle Scholar
  9. Haddad, Z. S., Durden, S. L., & Im, E. (1996). Parameterizing the raindrop size distribution. Journal of Applied Meteorology,35(1), 3–13.CrossRefGoogle Scholar
  10. Haddad, Z. S., et al. (1997). A new parametrization of the rain drop size distribution. IEEE Transactions on Geoscience and Remote Sensing,35(3), 532–539.CrossRefGoogle Scholar
  11. Harikumar, R., Sampath, S., & Kumar, V. S. (2009). An empirical model for the variation of rain drop size distribution with rain rate at a few locations in southern India. Advances in Space Research,43(5), 837–844.CrossRefGoogle Scholar
  12. Islam, M. R., Rahman, T., Khan, S., Khalifa, O., & Rashid, M. M. (2004). The rain attenuation prediction methods from 10 to 37 GHz microwave signals based on data measured in Malaysia. In: 3rd International Conference on Electrical, pp. 394–397.Google Scholar
  13. Jash, D., Resmi, E. A., Unnikrishnan, C. K., Sumesh, R. K., Sreekanth, T. S., Sukumar, N., et al. (2019). Variation in rain drop size distribution and rain integral parameters during southwest monsoon over a tropical station: An inter-comparison of disdrometer and Micro Rain Radar. Atmospheric Research,217, 24–36.CrossRefGoogle Scholar
  14. Jassal, B. S., Vidyarthi, A., Gowri, R., & Shukla, A. K. (2011). Modeling of rain drop size distribution for a tropical hot semi-arid site in India. 92.40.Google Scholar
  15. Joss, J., & Gori, E. G. (1978). Shapes of raindrop size distributions. Journal of Applied Meteorology,17(7), 1054–1061.CrossRefGoogle Scholar
  16. Joss, J., & Waldvogel, A. (1967). Ein spektrograph für niederschlagstropfen mit automatischer auswertung. Pure and Applied Geophysics,68(1), 240–246.CrossRefGoogle Scholar
  17. Kozu, T., & Nakamura, K. (1991). Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. Journal of Atmospheric and Oceanic Technology,8(2), 259–270.CrossRefGoogle Scholar
  18. Maitra, A. (2000). Three-parameter raindrop size distribution modelling at a tropical location. Electronics Letters,36(10), 906–907.CrossRefGoogle Scholar
  19. Marshall, J. S. (1948). The distribution of raindrops with size. J. Meteor.,5, 165–166.CrossRefGoogle Scholar
  20. Marshall, J. S., & Palmer, W. M. K. (1948). The distribution of raindrops with size. Journal of meteorology,5(4), 165–166.CrossRefGoogle Scholar
  21. Mehta, S., Singh, S., Mitra, A., Ghosh, S. K., & Raha, S. (2019). Diurnal variation of the lower tropospheric water vapor observed using microwave radiometer over Darjeeling (27.05 N, 88.26 E). Journal of the Indian Society of Remote Sensing,47(4), 619–628.CrossRefGoogle Scholar
  22. Pontes, M. S., da Silva Mello, L., de Souza, R. S. L., & Miranda, E. C. B. (2005). Review of rain attenuation studies in tropical and equatorial regions in Brazil. In: Information, Communications and Signal Processing Fifth International Conference on IEEE, pp. 1097–1101. Google Scholar
  23. Reddy, K. K., Kozu, T., Ohno, Y., Jain, A. R., & Rao, D. N. (2005). Estimation of vertical profiles of raindrop size distribution from the VHF wind pro filer radar Doppler spectra. 92.60. Jq; 92.60. Ry.Google Scholar
  24. Sauvageot, H., & Lacaux, J. P. (1995). The shape of averaged drop size distributions. Journal of the Atmospheric Sciences,52(8), 1070–1083.CrossRefGoogle Scholar
  25. Smith, P. L. (2003). Raindrop size distributions: Exponential or gamma—Does the difference matter? Journal of Applied Meteorology,42(7), 1031–1034.CrossRefGoogle Scholar
  26. Sumesh, R. K., Resmi, E. A., Unnikrishnan, C. K., Jash, D., Sreekanth, T. S., Resmi, M. M., et al. (2019). Microphysical aspects of tropical rainfall during Bright Band events at mid and high-altitude regions over Southern Western Ghats, India. Atmospheric Research,227, 178–197.CrossRefGoogle Scholar
  27. Takeuchi, D. M. (1978). Characterization of raindrop size distributions. In: Conference on Cloud Physics and Atmospheric Electricity, Issaquah, Wash, pp. 154–161.Google Scholar
  28. Tokay, A., & Short, D. A. (1996). Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. Journal of Applied Meteorology,35(3), 355–371.CrossRefGoogle Scholar
  29. Torres, D. S., Porrà, J. M., & Creutin, J. D. (1994). A general formulation for raindrop size distribution. Journal of Applied Meteorology,33(12), 1494–1502.CrossRefGoogle Scholar
  30. Ulbrich, C. W. (1983). Natural variations in the analytical form of the raindrop size distribution. Journal of Climate and Applied Meteorology,22(10), 1764–1775.CrossRefGoogle Scholar
  31. Ulbrich, C. W., & Atlas, D. (1984). Assessment of the contribution of differential polarization to improved rainfall measurements. Radio Science,19(1), 49–57.CrossRefGoogle Scholar
  32. Ulbrich, C. W., & Atlas, D. (1998). Rainfall microphysics and radar properties: Analysis methods for drop size spectra. Journal of Applied Meteorology,37(9), 912–923.CrossRefGoogle Scholar
  33. Vidyarthi, A., Jassal, B. S., & Gowri, R. (2011). Modeling of rain drop-size distribution for Indian region. In: Microwave Technology & Computational Electromagnetics (ICMTCE), 2011 IEEE International Conference on IEEE, pp. 350–353. Google Scholar
  34. Vidyarthi, A., Jassal, B. S., Gowri, R., & Shukla, A. K. (2012). Regional variability of rain drop size distribution model in India. Progress In Electromagnetics Research,34, 123–135.CrossRefGoogle Scholar
  35. Waldvogel, A. (1974). The N 0 jump of raindrop spectra. Journal of the Atmospheric Sciences,31(4), 1067–1078.CrossRefGoogle Scholar
  36. White, A. B., Gottas, D. J., Strem, E. T., Ralph, F. M., & Neiman, P. J. (2002). An automated brightband height detection algorithm for use with Doppler radar spectral moments. Journal of Atmospheric and Oceanic Technology,19(5), 687–697.CrossRefGoogle Scholar
  37. Williams, C. R. (2002). Simultaneous ambient air motion and raindrop size distributions retrieved from UHF vertical incident profiler observations. Radio Science,37(2), 1–22.CrossRefGoogle Scholar
  38. Williams, C. R., & Gage, K. S. (2009). Raindrop size distribution variability estimated using ensemble statistics. In: Annales geophysicae: atmospheres, hydrospheres and space sciences, Vol. 27, No. 2, p. 555.Google Scholar
  39. Willis, P. T., & Tattelman, P. (1989). Drop-size distributions associated with intense rainfall. Journal of Applied Meteorology,28(1), 3–15.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Physics, Center for Astroparticle Physics and Space ScienceBose InstituteKolkataIndia
  2. 2.Research InstituteSRM Institute of Science and Technology (SRM IST)KattankulathurIndia

Personalised recommendations