Advertisement

Space-Time Precursory Features within Ground Velocities and Seismicity in North-Central Italy

  • Mattia CrespiEmail author
  • Vladimir Kossobokov
  • Giuliano F. Panza
  • Antonella Peresan
Article
  • 74 Downloads

Abstract

Earthquakes cannot be predicted with ultimate precision, so that the progressive reduction of the prediction uncertainty in space and time is an evergreen and challenging task, both from the scientific point of view for the intrinsic complexity of seismic phenomenon and for its high societal relevance. To this aim, algorithms (like CN, M8 and M8S) based on objective recognition of seismicity patterns have been already tested for some decades for intermediate-term middle-range prediction of strong earthquakes above a pre-assigned magnitude threshold. Here, moving from some preliminary ideas, we propose an integrated approach to earthquake prediction, based on the synergy of high-density geodetic observations and seismological information, defining a new paradigm for time dependent hazard assessment scenarios. Through a wider and more refined retrospective analysis, duly involving the accuracy analysis of the newly available geodetic results, space–time precursory features are highlighted within ground velocities and seismicity, analyzing the 2016–2017 seismic crisis in Central Italy and the 2012 Emilia sequence. Overall, it is demonstrated that the proper integration of seismological and geodetic information can achieve what here is called intermediate-term narrow-range earthquake prediction. The extent of the alarmed areas, identified for the strong earthquakes by earthquake prediction algorithms based on seismicity patterns, can be significantly reduced from linear dimensions of a few hundred to a few tens of kilometers, leading to an improved more specific implementation of low-key preventive actions, like those recommended by UNESCO as early as in 1991.

Keywords

Neo-deterministic seismic hazard assessment seismicity patterns geodetic signatures earthquake prediction intermediate-term narrow-range low-key preventive actions 

Notes

Acknowledgements

Authors are in debt to Augusto Mazzoni (Geodesy and Geomatics Division, DICEA—Sapienza University of Rome) for the implementation of the code useful to evaluate the accuracy of the velocities and for the preparation of Figs. 3, 4, 5, 7 and 8. The Authors thank the anonymous Reviewers and the Editor for the raised remarks, which contributed to improve the manuscript.

References

  1. Brandmayr, E., Romanelli, F., & Panza, G. F. (2013). Stability of fault plane solutions for the major N-Italy seismic events in 2012. Tectonophysics, 608, 525–529.  https://doi.org/10.1016/j.tecto.2013.08.034.CrossRefGoogle Scholar
  2. Bruyninx, C., et al. (2012). Enhancement of the EUREF permanent network services and products. Geodesy for Planet Earth, 136, 27–35.  https://doi.org/10.1007/978-3-642-20338-1_4.CrossRefGoogle Scholar
  3. Davis, C., Keilis-Borok, V., Kossobokov, V., & Soloviev, A. (2012). Advance prediction of the March 11, 2011 Great East Japan Earthquake: A missed opportunity for disaster preparedness. International Journal of Disaster Risk Reduction, 1, 17–32.  https://doi.org/10.1016/j.ijdrr.2012.03.001.CrossRefGoogle Scholar
  4. Devoti, R., D’Agostino, N., Serpelloni, E., Pietrantonio, G., Riguzzi, F., Avallone, A., et al. (2017). A combined velocity field of the Mediterranean region. Annals of Geophysics, 60(2), 0215.  https://doi.org/10.4401/ag-7059.CrossRefGoogle Scholar
  5. Devoti, R., Pietrantonio, G., & Riguzzi, F. (2014). GNSS networks for geodynamics in Italy. Física de la Tierra, 26, 11–24.CrossRefGoogle Scholar
  6. Devoti, R., & Riguzzi, F. (2018). The velocity field of the Italian area. Rendiconti Lincei, 29(1), 51–58.CrossRefGoogle Scholar
  7. Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.  https://doi.org/10.1145/358669.358692.CrossRefGoogle Scholar
  8. INGV RING Working Group. (2016). Rete Integrata Nazionale GPS.  https://doi.org/10.13127/ring.
  9. Ismail-Zadeh, A. T., & Kossobokov, V. G. (2011). Earthquake forecast M8 algorithm. In H. Gupta (Ed.), Encyclopaedia of solid earth geophysics (pp. 178–182). Heidelberg: Springer.  https://doi.org/10.1007/978-90-481-8702-7.CrossRefGoogle Scholar
  10. Kantorovich, L. V., Keilis-Borok, V. I. (1991). Earthquake prediction and decision-making: Social, economic and civil protection aspects. Proc. international conference on earthquake prediction: State-of-the-Art (pp. 586–593). Strasbourg, France: Scientific-Technical Contributions, CSEM-EMSC, 1991). Based on “Economics of earthquake prediction” (Proc. UNESCO conference on seismic risk, Paris, 1977).Google Scholar
  11. Kantorovich, L. V., Keilis-Borok, V. I., & Molchan, G. M. (1974). Seismic risk and principles of seismic zoning, in Seismic design decision analysis (p. 43). Cambridge: MIT. (Internal Study Report).Google Scholar
  12. Keilis-Borok, V. I. (1996). Intermediate term earthquake prediction. Proceedings of the National academy of Sciences of the United States of America, 93, 3748–3755.CrossRefGoogle Scholar
  13. Keilis-Borok, V. I., & Soloviev, A. A. (2003). Non-linear dynamics of the lithosphere and earthquake prediction (p. 337). Heidelberg: Springer. (ISBN 978-3-662-05298-3).CrossRefGoogle Scholar
  14. Kossobokov, V. G. (2017). Testing an earthquake prediction algorithm: The 2016 New Zealand and Chile Earthquakes. Pure and Applied Geophysics, 174(5), 1845–1854.  https://doi.org/10.1007/s00024-017-1543-9.CrossRefGoogle Scholar
  15. Kossobokov, V. G., Peresan, A., & Panza, G. F. (2015). On operational earthquake forecast/prediction problems. Seismological Research Letters.  https://doi.org/10.1785/0220140202.Google Scholar
  16. Kossobokov, V. G., Romashkova, L. L., Panza, G. F., & Peresan, A. (2002). Stabilizing intermediate-term medium-range earthquake predictions. Journal of Seismology and Earthquake Engineering, 4(2&3), 11–19.Google Scholar
  17. Kossobokov, V. G., & Soloviev, A. A. (2015). Evaluating the results of testing algorithms for prediction of earthquakes. Doklady Earth Sciences, 460(2), 192–194.  https://doi.org/10.1134/S1028334X15020208.CrossRefGoogle Scholar
  18. Kreemer, C., Blewitt, G., & Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15, 3849–3889.  https://doi.org/10.1002/2014gc005407.CrossRefGoogle Scholar
  19. Molchan, G., Romashkova, L., & Peresan, A. (2017). On some methods for assessing earthquake predictions. Geophysical Journal International, 210, 1474–1480.  https://doi.org/10.1093/gji/ggx239.CrossRefGoogle Scholar
  20. Panza, G. F. (2010). Verso una società preparata alle calamità ambientali: Il terremoto. Geoitalia, 32, 24–31.  https://doi.org/10.1474/Geoitalia-32-01.Google Scholar
  21. Panza, G. F., Peresan, A. & La Mura, C. (2013a). Seismic hazard and strong motion: An operational neo-deterministic approach from national to local scale. In UNESCO-EOLSS Joint Committee (Eds.), Geophysics and geochemistry, encyclopedia of life support systems (EOLSS). Developed under the Auspices of the UNESCO, Oxford, UK: Eolss Publishers. http://www.eolss.net.
  22. Panza, G. F., Peresan, A., Magrin, A., Vaccari, F., Sabadini, R., Crippa, B., et al. (2013b). The SISMA prototype system: Integrating geophysical modeling and earth observation for time-dependent seismic hazard assessment. Natural Hazards, 69, 1179–1198.  https://doi.org/10.1007/s11069-011-9981-7.CrossRefGoogle Scholar
  23. Panza, G. F., Peresan, A., Sansò, F., Crespi, M., Mazzoni, A., & Nascetti, A. (2018). How geodesy can contribute to the understanding and prediction of earthquakes. Rendiconti Lincei. Scienze Fisiche e Naturali, 29(Suppl 1), 81.  https://doi.org/10.1007/s12210-017-0626-y.CrossRefGoogle Scholar
  24. Peresan, A. (2018). Recent developments in the detection of seismicity patterns for the Italian region. In D. Ouzounov, S. Pulinets, K. Hattori, & P. Taylor (Eds.), Pre-earthquake processes: A multi-disciplinary approach to earthquake prediction studies, Chapter 9. AGU geophysical monograph series (Vol. 234, pp. 149–172). New York: Wiley.  https://doi.org/10.1002/9781119156949.ch9.CrossRefGoogle Scholar
  25. Peresan, A., Costa, G., & Panza, G. F. (1999). Seismotectonic model and CN earthquake prediction in Italy. Pure and Applied Geophysics, 154, 281–306.CrossRefGoogle Scholar
  26. Peresan, A., Gorshkov, A., Soloviev, A., & Panza, G. F. (2015). The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment. Bollettino di Geofisica Teorica ed Applicata., 56, 295–328.  https://doi.org/10.4430/bgta0141.Google Scholar
  27. Peresan, A., Kossobokov, V. G., & Panza, G. F. (2012). Operational earthquake forecast/prediction. Rendiconti Lincei, 23, 131–138.  https://doi.org/10.1007/s12210-012-0171-7.CrossRefGoogle Scholar
  28. Peresan, A., Kossobokov, V., Romashkova, L., Magrin, A., Soloviev, A., & Panza, G. F. (2016). Time-dependent neo-deterministic seismic hazard scenarios: Preliminary report on the M6.2 Central Italy earthquake, 24th August 2016. Special issue on “The August 2016 Central Italy earthquake”. New Concepts in Global Tectonics Journal, 4(3), 487–493.Google Scholar
  29. Peresan, A., Kossobokov, V. G., Romashkova, L., & Panza, G. F. (2005). Intermediate-term middle-range earthquake predictions in Italy: A review. Earth-Science Review, 69, 97–132.CrossRefGoogle Scholar
  30. Rotwain, I. M., KeilisBorok, V. I., & Botvina, L. R. (1997). Premonitory transformation of steel fracturing and seismicity. Physics of the Earth and Planetary Interiors, 101, 61–71.CrossRefGoogle Scholar
  31. Rugarli, P., Amadio, C., Peresan, A., Fasan, M., Vaccari, F., Magrin, A., et al. (2018). Neo-deterministic scenario-earthquake accelerograms and spectra: A NDSHA approach to seismic analysis. In J. Jia & J. K. Paik (Eds.), Structural engineering in vibrations, dynamics and impacts (p. 399). Abingdon: CRC Press. (ISBN1351646214).Google Scholar
  32. Scrocca, D., Doglioni, C., & Innocenti, F. (2003). Contraints for an interpretation of the Italian geodynamics: A review. Memorie Descrittive della Carta Geologica d’Italia, 2003, 15–46.Google Scholar
  33. Sobolev, G. A., Chelidze, T. L., Zavyalov, A. D., Slavina, L. B., & Nikoladze, V. E. (1991). Earthquakes based on a combination of parameters. Tectonophysics, 193, 255–265.  https://doi.org/10.1016/0040-1951(91)90335-p.CrossRefGoogle Scholar
  34. Zavyalov, A. D. (2005). Medium-term prediction of earthquakes from a set of criteria: Principles, methods, and implementation. Russian Journal of Earth Sciences, 7(1), 51–73.  https://doi.org/10.2205/2004es000159.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Geodesy and Geomatics DivisionDICEA-Sapienza University of RomeRomeItaly
  2. 2.Institute of Earthquake Prediction Theory and Mathematical GeophysicsRussian Academy of SciencesMoscowRussia
  3. 3.Accademia Nazionale dei LinceiRomeItaly
  4. 4.Accademia Nazionale delle Scienze detta dei XLRomeItaly
  5. 5.Institute of GeophysicsChina Earthquake AdministrationBeijingChina
  6. 6.Beijing University of Civil Engineering and ArchitectureBeijingChina
  7. 7.National Institute of Oceanography and Experimental Geophysics, OGS, Seismological Research CenterUdineItaly
  8. 8.International Seismic Safety Organisation, ISSOArsitaItaly

Personalised recommendations