Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 12, pp 5377–5390 | Cite as

3D Numerical Simulation of Elastic Wave Propagation in Discrete Fracture Network Rocks

  • Guiwu Chen
  • Lei SongEmail author
  • Lanbo Liu
Article
  • 195 Downloads

Abstract

Fractures play an important role in controlling rock block stability and the hydraulic properties of fractured rock formations. Understanding elastic wave propagation in fractured media can result in significant advances for the geophysical prediction of fracture parameters from seismic data. However, most natural fracture characteristics, such as fracture length, aperture, angle and location are random; therefore, fracture models must be built discretely and follow some stochastic principles. We construct stochastic models of fractured rock samples using a random fracture network rather than a single fracture. Three-dimensional (3D) wave field computation is a computationally complex problem. Here, the 3D fourth-order in space, second-order in time, displacement-stress staggered-grid finite-difference scheme is used for accurate simulations. Our numerical examples demonstrate the effects of varying fracture number, aperture, and length distribution of the fracture network on the seismic response. The wave field scattering caused by the contrast between fractures and background media is one of the key features, and the resulting scattering is more obvious for S-waves than for P-waves. Such an approach can be applied to any fracture network model that provides a link between fracture parameters and seismic attributes.

Keywords

Wave propagation discrete fracture network scattering fracture parameter 

Notes

Acknowledgements

This research is supported by “the Fundamental Research Funds for the Central Universities” (2018ZDPY08) and the National Science Foundation of China (NSFC grant no. 41474122). We would like to thank Dr. Younes Fadakar Alghalandis for providing ADFNE software for discrete fracture modeling.

References

  1. Adewole, K. K., & Bull, S. J. (2013). Prediction of the fracture performance of defect-free steel bars for civil engineering applications using finite element simulation. Construction and Building Materials,41, 9–14.  https://doi.org/10.1016/j.conbuildmat.2012.11.089.CrossRefGoogle Scholar
  2. Alghalandis, Y. F. (2017). ADFNE: open source software for discrete fracture network engineering, two and three dimensional applications. Computers & Geosciences,102, 1–11.  https://doi.org/10.1016/j.cageo.2017.02.002.CrossRefGoogle Scholar
  3. Chen, H., & Zhang, G. (2018). Detection of natural fractures from observed surface seismic data based on a linear-slip model. Pure and Applied Geophysics,175, 2769–2784.  https://doi.org/10.1007/s00024-018-1848-3.CrossRefGoogle Scholar
  4. Cheng-Haw, L., Chen-Chang, L., & Bih-Shan, L. (2006). The estimation of dispersion behavior in discrete fractured networks of andesite in Lan-Yu Island, Taiwan. Environmental Geology,52, 1297–1306.  https://doi.org/10.1007/s00254-006-0568-7.CrossRefGoogle Scholar
  5. Coates, R. T., & Schoenberg, M. (1995). Finite-difference modeling of faults and fractures. Geophysics,60, 1514–1526.  https://doi.org/10.1190/1.1443884.CrossRefGoogle Scholar
  6. De Basabe, J. D., Sen, M. K., & Wheeler, M. F. (2016). Elastic wave propagation in fractured media using the discontinuous Galerkin method. Geophysics,81, T163–T174.  https://doi.org/10.1190/geo2015-0602.1.CrossRefGoogle Scholar
  7. den Boer, L. D., & Sayers, C. M. (2018). Constructing a discrete fracture network constrained by seismic inversion data. Geophysical Prospecting,66, 124–140.  https://doi.org/10.1111/1365-2478.12527.CrossRefGoogle Scholar
  8. Fang, X., Zheng, Y., & Fehler, M. C. (2017). Fracture clustering effect on amplitude variation with offset and azimuth analyses. Geophysics,82, N13–N25.  https://doi.org/10.1190/geo2016-0045.1.CrossRefGoogle Scholar
  9. Guo, W., Zhao, G., Lou, G., & Wang, S. (2019). Height of fractured zone inside overlying strata under high-intensity mining in China. International Journal of Mining Science and Technology,29, 45–49.  https://doi.org/10.1016/j.ijmst.2018.11.012.CrossRefGoogle Scholar
  10. Hilloulin, B., et al. (2016). Monitoring of autogenous crack healing in cementitious materials by the nonlinear modulation of ultrasonic coda waves, 3D microscopy and X-ray microtomography. Construction and Building Materials,123, 143–152.  https://doi.org/10.1016/j.conbuildmat.2016.06.138.CrossRefGoogle Scholar
  11. Huang, L., Stewart, R. R., Dyaur, N., & Baez-Franceschi, J. (2016). 3D-printed rock models: Elastic properties and the effects of penny-shaped inclusions with fluid substitution. Geophysics,81, D669–D677.  https://doi.org/10.1190/geo2015-0655.1.CrossRefGoogle Scholar
  12. Hunziker, J., Favino, M., Caspari, E., Quintal, B., Rubino, J. G., Krause, R., et al. (2018). Seismic attenuation and stiffness modulus dispersion in porous rocks containing stochastic fracture networks. Journal of Geophysical Research: Solid Earth,123, 125–143.  https://doi.org/10.1002/2017jb014566.CrossRefGoogle Scholar
  13. Kruger, O. S., Saenger, E. H., Oates, S. J., & Shapiro, S. A. (2007). A numerical study on reflection coefficients of fractured media. Geophysics,72, D61–D67.  https://doi.org/10.1190/1.2732690.CrossRefGoogle Scholar
  14. Li, X., Dao, M., Eberl, C., Hodge, A. M., & Gao, H. (2016). Fracture, fatigue, and creep of nanotwinned metals. MRS Bulletin,41, 298–304.  https://doi.org/10.1557/mrs.2016.65.CrossRefGoogle Scholar
  15. Li, J., & Huang, Y. (2013). Time-domain finite element methods for Maxwell’s equations in metamaterials., Springer series in computational mathematics New York: Springer.  https://doi.org/10.1007/978-3-642-33789-5.CrossRefGoogle Scholar
  16. Li, H., Lu, Y., Zhou, L., Tang, J., Han, S., & Ao, X. (2017). Experimental and model studies on loading path-dependent and nonlinear gas flow behavior in shale fractures. Rock Mechanics and Rock Engineering,51, 227–242.  https://doi.org/10.1007/s00603-017-1296-x.CrossRefGoogle Scholar
  17. Mavko, G., Mukerji, T., & Dvorkin, J. (2009). The rock physics handbook (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Moczo, P. (2000). 3D fourth-order staggered-grid finite-difference schemes: Stability and grid dispersion. Bulletin of the Seismological Society of America,90, 587–603.  https://doi.org/10.1785/0119990119.CrossRefGoogle Scholar
  19. Monsalve, J. J., Baggett, J., Bishop, R., & Ripepi, N. (2019). Application of laser scanning for rock mass characterization and discrete fracture network generation in an underground limestone mine. International Journal of Mining Science and Technology,29, 131–137.  https://doi.org/10.1016/j.ijmst.2018.11.009.CrossRefGoogle Scholar
  20. Morasch, A., Reeb, A., Baier, H., Weidenmann, K. A., & Schulze, V. (2015). Characterization of debonding strength in steel-wire-reinforced aluminum and its influence on material fracture. Engineering Fracture Mechanics,141, 242–259.  https://doi.org/10.1016/j.engfracmech.2015.05.029.CrossRefGoogle Scholar
  21. Osinowo, O. O., Chapman, M., Bell, R., & Lynn, H. B. (2017). Modelling orthorhombic anisotropic effects for reservoir fracture characterization of a naturally fractured tight carbonate reservoir, Onshore Texas, USA. Pure and Applied Geophysics,174, 4137–4152.  https://doi.org/10.1007/s00024-017-1620-0.CrossRefGoogle Scholar
  22. Saenger, E. H., & Bohlen, T. (2004). Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics,69, 583–591.  https://doi.org/10.1190/1.1707078.CrossRefGoogle Scholar
  23. Saenger, E. H., Kruger, O. S., & Shapiro, S. A. (2006). Effective elastic properties of fractured rocks: Dynamic vs. static considerations. Int J Fracture,139, 569–576.  https://doi.org/10.1007/s10704-006-0105-4.CrossRefGoogle Scholar
  24. Stewart, R. R., Dyaur, N., Omoboya, B., de Figueiredo, J. J. S., Willis, M., & Sil, S. (2013). Physical modeling of anisotropic domains: Ultrasonic imaging of laser-etched fractures in glass. Geophysics,78, D11–D19.  https://doi.org/10.1190/geo2012-0075.1.CrossRefGoogle Scholar
  25. Sun, R., McMechan, G. A., Hsiao, H. H., & Chow, J. (2004). Separating P- and S-waves in prestack 3D elastic seismograms using divergence and curl. Geophysics,69, 286–297.  https://doi.org/10.1190/1.1649396.CrossRefGoogle Scholar
  26. Vlastos, S., Liu, E., Main, I. G., & Li, X. Y. (2003). Numerical simulation of wave propagation in media with discrete distributions of fractures: effects of fracture sizes and spatial distributions. Geophysical Journal International,152, 649–668.  https://doi.org/10.1046/j.1365-246X.2003.01876.x.CrossRefGoogle Scholar
  27. Wu, Z., Fan, L., & Zhao, S. (2018). Effects of hydraulic gradient, intersecting angle, aperture, and fracture length on the nonlinearity of fluid flow in smooth intersecting fractures: An experimental investigation. Geofluids,2018, 1–14.  https://doi.org/10.1155/2018/9352608.CrossRefGoogle Scholar
  28. Zazoun, R. S. (2008). The Fadnoun area, Tassili-n-Azdjer, Algeria: Fracture network geometry analysis. Journal of African Earth Sciences,50, 273–285.  https://doi.org/10.1016/j.jafrearsci.2007.10.001.CrossRefGoogle Scholar
  29. Zhang, R., Vasco, D., & Daley, T. M. (2015). Study of seismic diffractions caused by a fracture zone at In Salah carbon dioxide storage project. International Journal of Greenhouse Gas Control,42, 75–86.  https://doi.org/10.1016/j.ijggc.2015.07.033.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Geomechanics and Deep Underground EngineeringChina University of Mining and TechnologyXuzhouChina
  2. 2.Department of Civil and Environmental EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations