Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 12, pp 5279–5289 | Cite as

Long-term In Situ Permeability Variations of an Active Fault Zone in the Interseismic Period

  • Yuchuan MaEmail author
  • Guangcai Wang
  • Rui Yan
  • Bo Wang
Article
  • 191 Downloads

Abstract

Hydraulic properties were estimated by analyzing the continuous water level response to Earth tides in a well intersecting the Qujiang active fault (in Yunnan, China) which had ruptured during the 1970 Tonghai Ms 7.8 earthquake. The in situ permeability from 2001 to 2018 fluctuates around 4 × 10−14 m2, with a variation of about 25%, and the hydraulic diffusivity varies from 0.29 to 0.55 m2/s. The permeability is comparable to the permeability estimated from the slug tests. According to the results, we suggest that the permeability in the damage zone of the Qujiang fault is dynamic, and the fault zone provides a localized horizontal conduit for the along-fault fluid flow. Furthermore, the shallow part of the Qujiang fault may heal incompletely or not heal after the Tonghai earthquake, and the fault may be stable between 2001 and 2018.

Keywords

Permeability fault zone well water level tidal analysis Tonghai earthquake 

Notes

Acknowledgements

The water level data, earthquake catalog, and meteorological data were obtained from the China Earthquake Networks Center. This research work was supported by the National Natural Science Foundation of China (U1602233), the National Key R&D Program of China (2018YFC1503305), and the Spark Program of Earthquake Science of China (XH19055). We are grateful to Dr. Giuliana Rossi and an anonymous reviewer for their helpful comments and suggestions.

References

  1. Agnew, D. C. (1997). NLOADF: A program for computing ocean-tide loading. Journal of Geophysical Research: Solid Earth,102(B3), 5109–5110.CrossRefGoogle Scholar
  2. Allègre, V., Brodsky, E. E., Xue, L., Nale, S. M., Parker, B. L., & Cherry, J. A. (2016). Using earth-tide induced water pressure changes to measure in situ permeability: A comparison with long-term pumping tests. Water Resources Research,52, 3113–3126.CrossRefGoogle Scholar
  3. Bower, D. R. (1983). Bedrock fracture parameters from the interpretation of well tides. Journal of Geophysical Research: Solid Earth,88(B6), 5025–5035.CrossRefGoogle Scholar
  4. Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology,24(11), 1025–1028.CrossRefGoogle Scholar
  5. Carr, P. A., & van der Kamp, G. S. (1969). Determining aquifer characteristics by the tidal method. Water Resources Research,11(5), 1023–1031.CrossRefGoogle Scholar
  6. China Earthquake Administration. (2008). The Chinese seismic intensity scale (GB/T 17742–2008). Beijing: Standards Press of China (in Chinese).Google Scholar
  7. Clauser, C. (1992). Permeability of crystalline rocks. Eos Transactions American Geophysical Union,73(21), 233–238.CrossRefGoogle Scholar
  8. Cooper, H. H., Bredehoeft, J. D., & Papadopulos, I. S. (1967). Response of a finite-diameter well to an instantaneous charge of water. Water Resources Research,3(1), 263–269.CrossRefGoogle Scholar
  9. Cooper, H. H., Bredehoeft, J. D., Papadopulos, I. S., & Bennett, R. R. (1965). The response of well-aquifer systems to seismic waves. Journal of Geophysical Research,70(16), 3915–3926.CrossRefGoogle Scholar
  10. Doan, M. L., Brodsky, E. E., Kano, Y., & Ma, K. F. (2006). In situ measurement of the hydraulic diffusivity of the active Chelungpu fault, Taiwan. Geophysical Research Letters,33(16), 373–386.CrossRefGoogle Scholar
  11. Elkhoury, J. E., Brodsky, E. E., & Agnew, D. C. (2006). Seismic waves increase permeability. Nature,441, 1135–1138.CrossRefGoogle Scholar
  12. Ellsworth, W. L. (2013). Injection-induced earthquakes. Science,341(6142), 1225942.CrossRefGoogle Scholar
  13. Evans, J. P., Forster, C. B., & Goddard, J. V. (1997). Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology,19(11), 1393–1404.CrossRefGoogle Scholar
  14. Fairley, J., Heffner, J., & Hinds, J. (2003). Geostatistical evaluation of permeability in an active fault zone. Geophysical Research Letters,30(18), 223–250.CrossRefGoogle Scholar
  15. Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., et al. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology,32(11), 1557–1575.CrossRefGoogle Scholar
  16. George, H., Rhoads, Jr, & Robinson, E. S. (1979). Determination of aquifer parameters from well tides. Journal of Geophysical Research: Solid Earth,84(B11), 6071–6082.CrossRefGoogle Scholar
  17. Hsieh, P. A., Bredehoeft, J. D., & Farr, J. M. (1987). Determination of aquifer transmissivity from Earth tide analysis. Water Resources Research,23, 1824–1832.CrossRefGoogle Scholar
  18. Hu, X. J., Fu, H., & Li, Q. (2018). Preliminary study on abnormal mechanism of groundwater level rising in southern Yunnan. Acta Seismologica Sinica,40(5), 620–631. (In Chinese with English abstract).Google Scholar
  19. Ingebritsen, S. E., & Manning, C. E. (2010). Permeability of the continental crust: Dynamic variations inferred from seismicity and metamorphism. Geofluids,10(1–2), 193–205.Google Scholar
  20. Kitagawa, Y., Fujimori, K., & Koizumi, N. (2002). Temporal change in permeability of the rock estimated from repeated water injection experiments near the Nojima fault in Awaji Island Japan. Geophysical Research Letters,29(29), 1211–1214.CrossRefGoogle Scholar
  21. Kitagawa, Y., Koizumi, N., Notsu, K., & Igarashi, G. (1999). Water injection experiments and discharge changes at the Nojima fault in Awaji Island Japan. Geophysical Research Letters,26(20), 3173–3176.CrossRefGoogle Scholar
  22. Liu, Z. Y., Huang, F. G., & Jin, Z. L. (1999). The 1970 Tonghai earthquake (pp. 31–64). Beijing: Seismological Press. (In Chinese with English abstract).Google Scholar
  23. Lockner, D. A., Tanaka, H., Ito, H., Ikeda, R., Omura, K., & Naka, H. (2009). Geometry of the Nojima fault at Nojima-Hirabayashi, Japan-I. A simple damage structure inferred from borehole core permeability. Pure and Applied Geophysics,166(10–11), 1649–1667.CrossRefGoogle Scholar
  24. Lunn, R. J., Willson, J. P., Shipton, Z. K., & Moir, H. (2008). Simulating brittle fault growth from linkage of preexisting structures. Journal of Geophysical Research: Solid Earth,113, B07403.  https://doi.org/10.1029/2007JB005388.CrossRefGoogle Scholar
  25. Matsumoto, N., & Roeloffs, E. A. (2003). Hydrological response to earthquakes in the Haibara well, central Japan-II. Possible mechanism inferred from time-varying hydraulic properties. Geophysical Journal International,155(3), 899–913.CrossRefGoogle Scholar
  26. Morrow, C. A., Shi, L. Q., & Byerlee, J. D. (1984). Permeability of fault gouge under confining pressure and shear stress. Journal of Geophysical Research: Solid Earth,89(B5), 3193–3200.CrossRefGoogle Scholar
  27. Raleigh, C. B., Healy, J. H., & Bredehoeft, J. D. (1976). An experiment in earthquake control at Rangely, Colorado. Science,191(4233), 1230–1237.CrossRefGoogle Scholar
  28. Renard, F., Gratier, J. P., & Jamtveit, B. (2000). Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults. Journal of Structural Geology,22(10), 1395–1407.CrossRefGoogle Scholar
  29. Rice, J. R. (1992). Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault. International Geophysics,20, 475–503.CrossRefGoogle Scholar
  30. Roeloffs, E. E. (1996). Poroelastic techniques in the study of earthquake-related hydrologic phenomena. Advances in Geophysics,37(1), 135–195.CrossRefGoogle Scholar
  31. Seront, B., Wong, T. F., Caine, J. S., Forster, C. B., Bruhn, R. L., & Fredrich, J. T. (1998). Laboratory characterization of hydromechanical properties of a seismogenic normal fault system. Journal of Structural Geology,20(7), 865–881.CrossRefGoogle Scholar
  32. Shi, Z. M., Zhang, S. C., Yan, R., & Wang, G. C. (2018). Fault zone permeability decrease following large earthquakes in a hydrothermal system. Geophysical Research Letters,45(3), 1387–1394.CrossRefGoogle Scholar
  33. Shimamoto, H. N., Tanikawa, W., Wibberley, C. A. J., & Uehara, S. (2004). Fault-zone permeability structures and their implications for earthquake mechanisms and geo-engineering problems. In: Proceedings of ISRM International Symposium 3rd ARMS, Millpress, Rotterdam 1025.Google Scholar
  34. Sun, X., Wang, G., & Yang, X. (2015). Coseismic response of water level in Changping well, China, to the Mw 9.0 Tohoku earthquake. Journal of Hydrology,531, 1028–1039.CrossRefGoogle Scholar
  35. Townend, J., & Zoback, M. D. (2000). How faulting keeps the crust strong. Geology,28(5), 399–402.CrossRefGoogle Scholar
  36. Venedikov, A. P., Arnoso, J., & Vieira, R. (2003). VAV: A program for tidal data processing. Computers and Geosciences,29, 487–502.CrossRefGoogle Scholar
  37. Vidale, J. E., & Li, Y. G. (2003). Damage to the shallow landers fault from the nearby hector mine earthquake. Nature,421(6922), 524–526.CrossRefGoogle Scholar
  38. Wang, C. Y., Doan, M. L., Xue, L., & Barbour, A. (2018). Tidal response of groundwater in a leaky aquifer: application to Oklahoma. Water Resources Research,54(10), 8019–8033.CrossRefGoogle Scholar
  39. Wibberley, C. A. (2002). Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip. Earth Planets and Space,54(11), 1153–1171.CrossRefGoogle Scholar
  40. Wibberley, C. A. J., Yielding, G., & Toro, G. D. (2008). Recent advances in the understanding of fault zone internal structure: a review. Geological Society of London Special Publications,299(2), 5–33.CrossRefGoogle Scholar
  41. Xu, X. W., Wen, X. Z., Zheng, R. Z., Ma, W. T., Song, F. M., & Yu, G. H. (2003). Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Science China,46(2), 210–226.CrossRefGoogle Scholar
  42. Xue, L., Brodsky, E. E., Erskine, J., Fulton, P., & Carter, R. (2016). A permeability and compliance contrast measured hydrogeologically on the San Andreas fault. Geochemistry Geophysics Geosystems.  https://doi.org/10.1002/2015gc006167.CrossRefGoogle Scholar
  43. Xue, L., Li, H. B., Brodsky, E. E., Xu, Z. Q., Kano, Y., Wang, H., et al. (2013). Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone. Science,340, 1555–1559.CrossRefGoogle Scholar
  44. Yan, R., Wang, G. C., & Shi, Z. M. (2016). Sensitivity of hydraulic properties to dynamic strain within a fault damage zone. Journal of Hydrology,543, 721–728.CrossRefGoogle Scholar
  45. Yunnan Earthquake Administration. (2005). Seismic monitoring record of Yunnan Province. Beijing (in Chinese): Seismological Press.Google Scholar
  46. Zhang, Z. C. (1988). Earthquake cases in China (1966-1975). Beijing: Seismological Press. (In Chinese).Google Scholar
  47. Zhang, S. C., & Liu, B. C. (1978). Seismic geological characteristics of Tonghai earthquake in 1970. Scientia Geologica Sinica,4, 323–325. (In Chinese with English abstract).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Water Resources and EnvironmentChina University of GeosciencesBeijingChina
  2. 2.China Earthquake Networks CenterBeijingChina

Personalised recommendations