Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 11, pp 5079–5106 | Cite as

Evidence of Tornadoes and Microbursts in São Paulo State, Brazil: A Synoptic and Mesoscale Analysis

  • Augusto José Pereira FilhoEmail author
  • Felipe Vemado
  • Hugo Abi Karam
Article
  • 66 Downloads

Abstract

Synoptic and mesoscale analyses indicate environmental conditions favorable to the development of tornados and downbursts in Eastern São Paulo State, Brazil, between 16 May and 06 June 2016 under El Niño Sothern Oscillation (ENSO) condition. A subtropical jet stream strengthened by the 2015/2016 El Niño event over southeast Brazil and low-level moisture advection from the Amazon induced mid-level mesoscale vorticity and strong updrafts, respectively. These synoptic summer-like conditions yielded high dynamic and thermodynamic instability, producing deep convection and supercells with high lightning and precipitation rates with golf ball-sized hail stones and high winds at the surface, causing damages to trees, houses, towers and other structures with debris features associated with tornadoes and microbursts. Cellular phone photos and movies of severe weather events in Campinas and Janiru cities on 05 and 06 June 2016 suggest wind damage features caused by tornadoes ranked in the enhanced Fujita (EF) wind scale as EF1 (38–49 m s−1) and EF2 (49–60 m s−1), respectively. Similarly, cellular phone movies of Embu-Guaçu City severe weather event on 16 May 2016 suggest a microburst case. The present study is based on quantitative and qualitative records of three high-impact rainfall, hail, lightning and wind gust episodes in the extra tropics during late fall 2016.

Keywords

Tornado downburst weather radar deep convection 

Notes

Acknowledgements

The authors are grateful to Departamento de Águas e Energia Elétrica (DAEE) for providing SPWR datasets. The first author is partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grant 301149/2017-8.

References

  1. Akter, F., & Ishikawa, H. (2014). Synoptic features and environmental conditions of the tornado outbreak on March 22, 2013 at Brahmanbaria in the east-central region of Bangladesh. Natural Hazards,74, 1309–1326.Google Scholar
  2. Allen, J. T., Tippet, M. K., & Sobel, A. H. (2015). Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nature Geoscience,8, 278–283.Google Scholar
  3. Atkins, N. T., Butler, K. M., Flynn, K. R., & Wakimoto, R. M. (2014). An integrated damage, visual, and radar analysis of the 2013 Moore, Oklahoma, EF5 tornado. American Meteorological Society, BAMS,95, 1549–1561.Google Scholar
  4. Bech, J., Pascual, R., Rigo, T., Pineda, N., Lopez, J. M., Arús, J., et al. (2007). An observational study of the 7 September 2005 Barcelona tornado outbreak. Natural Hazards and Earth System Sciences,7, 129–139.Google Scholar
  5. Beck, V., & Dotzek, N. (2010). Reconstruction of near-surface tornado wind fields from forest damage. Journal of Applied Meteorology and Climatology,49, 1517–1537.Google Scholar
  6. Bedka, M. K. (2011). Overshooting cloud top detections using MSG SEVIRI Infrared brightness temperatures and their relationship to severe weather over Europe. Atmospheric Research,99, 175–189.Google Scholar
  7. Bluestein, H. B. (2005). A review of ground-based, mobile, W-band Doppler-radar observations of tornadoes and dust devils. Dynamics of Atmospheres and Oceans,40, 163–188.Google Scholar
  8. Bluestein, H. B., French, M. M., Popstefanija, I., Bluth, R. T., & Knorr, J. B. (2010). A mobile (pp. 579–600). BAMS: Phased-array doppler radar for the study of severe convective storms.Google Scholar
  9. Bluestein, H. B., French, M. M., & Tanamachi, R. L. (2017). Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Monthly Weather Review,135, 1522–1543.Google Scholar
  10. Bolton, N., Elsom, D. M., & Meaden, G. T. (2003). Forecasting tornadoes in the United Kingdom. Atmospheric Research,67–68, 53–72.Google Scholar
  11. Broeke, M. S. V. D. (2015). Polarimetric tornadic debris signature variability and debris fallout signatures. Journal of Applied Meteorology and Climatology,54, 2389–2405.Google Scholar
  12. Broeke, M. S. V. D., & Straka, J. M. (2008). Polarimetric radar observations at low levels during tornado life cycles in a small sample of classic southern plains supercells. Journal of Applied Meteorology and Climatology,47, 1232–1247.Google Scholar
  13. Brooks, H. E., Carbin, G. W., & Marsh, P. T. (2016). Increased variability of tornado occurrence in the United States. Climate Change,346, 349–352.Google Scholar
  14. Brown, R. A., & Wood, V. T. (2015). Detection of the presence of tornadoes at the center mesocyclones using simulated Doppler velocity measurements. Weather and Forecasting,30, 957–963.Google Scholar
  15. Brown, R. A., Wood, V. T., & Sirmans, D. (2002). Improved tornado detection using simulated and actual WSR-88D data with enhanced resolution. Journal of Atmospheric and Oceanic Technology,19, 1759–1771.Google Scholar
  16. Burgess, D., Ortega, K., Stumpf, G., Garfield, G., Karstens, C., Meyer, T., et al. (2014). 20 May 2013 Moore, Oklahoma, tornado: Damage survey and analysis. Weather and Forecasting,29, 1229–1237.Google Scholar
  17. Cook, A. R., & Schaefer, J. T. (2008). The relation of El Niño–Southern Oscillation (ENSO) to winter tornado outbreaks. Monthly Weather Review,136, 3121–3137.Google Scholar
  18. Davis, J. M., & Parker, M. D. (2014). Radar climatology of tornadic and nontornadic vortices in high-shear, low-CAPE environments in the mid-Atlantic and southeastern United States. Weather and Forecasting,29, 828–853.Google Scholar
  19. Ellrod, G. P., Nelson, J. P., III, Witiw, M. R., Bottos, L., & Roeder, W. P. (2000). Experimental GOES sounder products for the assessment of downburst potential. Weather and Forecasting,15, 527–542.Google Scholar
  20. Elsner, J. B., & Widen, H. W. (2014). Predicting spring tornado activity in the central Great Plains by 1 March. Monthly Weather Review,142, 1–10.Google Scholar
  21. French, M. M., Bluestein, H. B., Popstefanija, I., Baldi, C. A., & Bluth, R. T. (2013). Reexamining the vertical development of tornadic vortex signatures in supercells. Monthly Weather Review,141, 4576–4601.Google Scholar
  22. French, M. M., Burgess, D. W., Mansell, E. R., & Wicker, L. J. (2015). Bulk hook echo raindrop sizes retrieved using mobile, polarimetric Doppler radar observations. Journal of Applied Meteorology and Climatology,54, 423–450.Google Scholar
  23. Giaiotti, D. B., & Stel, F. (2007). A multiscale observational case study of an isolated tornadic supercell. Atmospheric Research,83, 152–161.Google Scholar
  24. Gravelle, C. M., Mecikalski, J. R., Line, W. E., Bedka, K. M., Petersen, R. A., Sieglaff, J. M., et al. (2016). Demonstration of a GOES-R satellite convective toolkit to “Bridge the Gap” between severe weather watches and warnings: An example from the 20 May 2013 Moore, Oklahoma, Tornado Outbreak. Bulletin of the American Meteorological Society, 97, 69–84.Google Scholar
  25. Houser, J. L., Bluestein, H. B., & Snyder, J. C. (2015). Rapid-scan, polarimetric Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011. Monthly Weather Review,143, 2685–2710.Google Scholar
  26. Jedlovec, G. J., Nair, U., & Haines, S. L. (2006). Detection of storm damage tracks with EOS data. Weather and Forecasting,21, 249–253.Google Scholar
  27. Kingfield, D. M., & LaDue, J. G. (2015). The relationship between automated low-level velocity calculations from the WSR-88D and maximum tornado intensity determined from damage surveys. Weather and Forecasting,30, 1125–1139.Google Scholar
  28. Knox, J. A., Rackley, J. A., Black, A. W., Gensini, V. A., Butler, M., Dunn, C., et al. (2013). Tornado debris characteristics and trajectories during the 27 April 2011 super outbreak as determined using social media data. American Meteorological Society,94, 1371–1380.Google Scholar
  29. Krishnamurthy, L., Vecchi, G. A., Msadek, R., Wittenberg, A., Delworth, T. L., & Zeng, F. (2015). The seasonality of the great plains low-level jet and ENSO relationship. Journal of Climate,28, 4525–4544.Google Scholar
  30. Kumjian, M. R., & Ryzhkov, A. (2008). Polarimetric signatures in supercell thunderstorms. Journal of Applied Meteorology and Climatology,47, 1940–1961.Google Scholar
  31. Lee, S. K., Atlas, R., Enfield, D., Wang, C., & Liu, H. (2013). Is there an optimal ENSO pattern that enhances large-scale atmospheric process conducive to tornado outbreaks in the United States? Journal of Climate,26, 1626–1642.Google Scholar
  32. Lee, S. K., Wittenberg, A. T., Enfield, D. B., Weaver, S. J., Wang, C., & Atlas, R. (2016). US regional tornado outbreaks and their links to spring ENSO phases and North Atlantic SST variability. Environmental Research Letters, 11, 044008.  https://doi.org/10.1088/1748-9326/11/4/044008.CrossRefGoogle Scholar
  33. Leeman, J. R., & Schmitter, E. D. (2009). Electric signals generated by tornados. Atmospheric Research,92, 277–279.Google Scholar
  34. Mahale, J. A., Brotzge, J. A., & Bluestein, H. B. (2014). The advantages of a mixed-band radar network for severe weather operations: a case study of 13 May 2009. Weather and Forecasting,29, 78–98.Google Scholar
  35. Malamud, B. D., & Turcotte, D. L. (2012). Statistics of severe tornadoes and severe tornado outbreaks. Atmospheric Chemistry and Physics,12, 8459–8473.Google Scholar
  36. Mccaul, E. W., Buechler, D. E., Goodman, S. J., & Cammarata, M. (2004). Doppler radar and lightning network observations of a severe outbreak of tropical cyclone tornadoes. Monthly Weather Review,132, 1747–1763.Google Scholar
  37. Meng, Z., & Yao, D. (2014). Damage survey, radar, and environment analyses on the first-ever documented tornado in Beijing during the heavy rainfall event of 21 July 2012. Weather and Forecasting,29, 702–724.Google Scholar
  38. Morales, C. A. R., Anagnostou, E. N., Williams, E., & Stanley Kriz, J. (2007). Evaluation of peak current polarity retrieved by the ZEUS long-range lightning monitoring system. IEEE Geoscience and Remote Sensing Letters,4(1), 32–36.Google Scholar
  39. Mulder, K. J., & Schultz, D. M. (2015). Climatology, storm morphologies, and environments of tornadoes in the British Isles: 1980–2012. Monthly Weather Review,143, 2224–2240.Google Scholar
  40. Mynt, S. W., Yuan, M., Cerveny, R. S., & Giri, C. (2008). Categorizing natural disaster damage assessment using satellite-based geospatial techniques. Natural Hazards and Earth System Sciences,8, 707–719.Google Scholar
  41. Palmer, R. D., Bodine, D., Kumjian, M., Cheong, B., Zhang, G., Cao, Q., et al. (2011). Observations of the 10 May 2010 tornado outbreak using OU-Prime. BAMS,92, 871–891.Google Scholar
  42. Pereira Filho, A. J. (2012). A mobile X-POL weather radar for hydrometeorological applications in the metropolitan area of São Paulo, Brazil. Geoscientific Instrumentation, Methods and Data Systems,1, 169–183.  https://doi.org/10.5194/gi-1-169-2012.CrossRefGoogle Scholar
  43. Pereira Filho, A. J., Pereira, J. D., Vemado, F., & Silva, I. W., Jr. (2015). Operational hydrometeorological forecast system for Espírito Santo State, Brazil. Journal of Hydrologic Engineering.  https://doi.org/10.1061/(asce)HE.1943-5584.0001215.CrossRefGoogle Scholar
  44. Rauhala, J., Brooks, H. E., & Schultz, D. M. (2012). Tornado climatology of Finland. Monthly Weather Review,140, 1446–1456.Google Scholar
  45. Ryzhkov, A. V., Schuur, T. J., & Burgess, D. W. (2005). Polarimetric tornado detection. Journal of Applied Meteorology,44, 557–570.Google Scholar
  46. Schmid, W., Shiesser, H.-H., Furger, M., & Jenni, M. (2000). The origin of severe winds in a tornadic bow-echo storm over Northern Switzerland. Monthly Weather Review,128, 192–207.Google Scholar
  47. Schneider, D., & Sharp, S. (2007). Radar signatures of tropical cyclone tornadoes in central North Carolina. Weather and Forecasting,22, 278–286.Google Scholar
  48. Sills, D. M., Wilson, J. W., Joe, P. I., Burgess, D. W., Webb, R. M., & Fox, N. I. (2004). The 3 November tornadic event during Sydney 2000: Storm evolution and the role of low-level boundaries. Weather and Forecasting,19, 22–31.Google Scholar
  49. Smith, T. M., Elmore, K. L., & Dulin, S. A. (2004). A damaging downburst prediction and detection algorithm for the WSR-88D. Weather and Forecasting,19, 240–250.Google Scholar
  50. Smith, B. T., Thompson, R. L., Dean, A. R., & Marsh, P. T. (2015). Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Weather and Forecasting,30, 914–932.Google Scholar
  51. Thompson, D. B., & Roundy, P. E. (2013). The relationship between the Madden–Julian Oscillation and U.S. violent tornado outbreaks in the spring. Monthly Weather Review,141, 2087–2095.Google Scholar
  52. Tippett, M. K., Sobel, A. H., & Camargo, S. J. (2012). Association of U.S. tornado occurrence with monthly environmental parameters. Geophysical Research Letters,39, L02801.Google Scholar
  53. Tochimoto, E., & Niino, H. (2016). Structural and environmental characteristics of extratropical cyclones that cause tornado outbreaks in the warm sector: A composite study. Monthly Weather Review,144, 945–969.Google Scholar
  54. Toth, M., Trapp, R. J., Wurman, J., & Kosiba, K. A. (2013). Comparison of mobile-radar measurements of tornado intensity with corresponding WSR-88D measurements. Weather and Forecasting,28, 418–426.  https://doi.org/10.1175/WAF-D-12-00019.1.CrossRefGoogle Scholar
  55. Trapp, R. J., Tessendorf, S. A., Godfrey, E. S., & Brooks, H. E. (2005). Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Weather and Forecasting,20, 23–34.Google Scholar
  56. Wang, Y., & Yu, T.-Y. (2015). Novel tornado detection using an adaptive neuro-fuzzy system with S-band polarimetric weather radar. Journal of Atmospheric and Oceanic Technology,32, 195–208.Google Scholar
  57. Wapler, K., Hengstebeck, T., & Groenemeijer, P. (2016). Mesocyclones in Central Europe as seen by radar. Atmospheric Research,168, 112–120.Google Scholar
  58. Wesolek, E., & Mahieu, P. (2011). The F4 tornado of August 3, 2008, in Northern France: Case study of a tornadic storm in a low CAPE environment. Atmospheric Research,100, 649–656.Google Scholar
  59. Wurman, J., Koshiba, K., Markowski, P., Richardson, Y., Dowell, D., & Robinson, P. (2010). Finescale single- and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, supercell. Monthly Weather Review,138, 4439–4455.Google Scholar
  60. Yuan, M., Micozzi, M. D., & Magsig, M. A. (2002). Analysis of tornado damage tracks from the 3 May tornado outbreak using multispectral satellite imagery. Weather and Forecasting,17, 382–398.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas-IAGUniversidade de São Paulo-USPSão PauloBrazil
  2. 2.Departamento de Meteorologia, Instituto de GeociênciasUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations