Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 11, pp 4833–4845 | Cite as

Imaging the Geometry of Cimandiri Fault Zone Based on 2D Audio-Magnetotelluric (AMT) Model in Nyalindung, Sukabumi–Indonesia

  • Ilham ArisbayaEmail author
  • Lina Handayani
  • Maruf M. Mukti
  • Yayat Sudrajat
  • Hendra Grandis
  • Prihadi Sumintadireja
Article
  • 230 Downloads

Abstract

We present an interpretation of newly acquired audio-magnetotelluric data to reveal the subsurface geometry of Cimandiri Fault Zone, one of the major active faults in the western part of Java. The line section is 25 km long in a nearly north–south direction across the axes of CFZ with 24 stations of 750–1200 m spacing intervals. The 2D AMT inversion model shows two conductive zones in the southern part that may be associated to the Miocene rocks of the Southern Mountains, and a conductive zone in the northern part that is likely to be associated with Gunung Walat fold-belt. The subsurface structures of the Southern Mountains are dominated by south-dipping thrusts that may uplift the shallow marine sediments. Shallow seismicity occurred around CFZ indicating the activity of these blind thrusts.

Keywords

Cimandiri Fault Zone audio-magnetotelluric Indonesia 

Notes

Acknowledgements

This research is part of a thematic research with funding sources from annual research budget of Research Center for Geotechnology LIPI. Greatest gratitude is expressed to the landowners who allowed us to take AMT measurements on their land. We thank our Geophysics Field Team: Sunardi, Nyanjang, Sutarman, and Dede Rusmana. We also express our gratitude to the editor and two anonymous reviewers for their input and constructive comments that greatly improved this paper.

References

  1. Abidin, H. Z., Andreas, H., Kato, T., Ito, T., Meilano, I., Kimata, F., Natawidjaya, D. H., & Harjono, H. (2009). Crustal deformation studies in Java (Indonesia) using GPS. Journal of Earthquake and Tsunami, 03, 77–88.  https://doi.org/10.1142/S1793431109000445.CrossRefGoogle Scholar
  2. Afnimar, Yulianto, E., & Rasmid (2015). Geological and tectonic implications obtained from first seismic activity investigation around Lembang fault. Geoscience Letters2, 11.  https://doi.org/10.1186/s40562-015-0020-5.CrossRefGoogle Scholar
  3. Becken, M., Ritter, O., Bedrosian, P. A., & Weckmann, U. (2011). Correlation between deep fluids, tremor and creep along the San Andreas fault. Nature,480, 87–90.  https://doi.org/10.1038/nature10609.CrossRefGoogle Scholar
  4. Clements, B., Hall, R., Smyth, H. R., & Cottam, M. A. (2009). Thrusting of a volcanic arc: a new structural model for Java. Petroleum Geoscience,15, 159–174.  https://doi.org/10.1144/1354-079309-831.CrossRefGoogle Scholar
  5. Dam, M. A. C., Suparan, P., Nossin, J. J., & Voskuil, R. (1996). A chronology for geomorphological developments in the greater Bandung area, West-Java, Indonesia. Journal of Southeast Asian Earth Sciences,14, 101–115.  https://doi.org/10.1016/S0743-9547(96)00069-4.CrossRefGoogle Scholar
  6. Dardji, N., Villemint, T., & Rampnoux, J. P. P. (1994). Paleostresses and strike-slip movement: the cimandiri fault zone, West Java, Indonesia. Journal of Southeast Asian Earth Sciences,9, 3–11.  https://doi.org/10.1016/0743-9547(94)90061-2.CrossRefGoogle Scholar
  7. Daryono, M. R., Natawidjaja, D. H., Sapiie, B., & Cummins, P. (2018). Earthquake geology of the lembang fault, West Java, Indonesia. Tectonophysics,751, 180–191.  https://doi.org/10.1016/j.tecto.2018.12.014.CrossRefGoogle Scholar
  8. Davy, R., Stern, T., & Townend, J. (2013). Gravity analysis of glaciotectonic processes, central alpine fault, South Island, New Zealand. New Zealand Journal of Geology and Geophysics,56, 100–108.  https://doi.org/10.1080/00288306.2013.782324.CrossRefGoogle Scholar
  9. Dolan, J. F., Christofferson, S. A., & Shaw, J. H. (2003). Recognition of paleoearthquakes on the puente hills blind thrust fault, California. Science,300, 115–118.  https://doi.org/10.1126/science.1080593.CrossRefGoogle Scholar
  10. Effendi, A. C., Kusnama, & Hermanto, B. (1998). Geological map of the Bogor quadrangle, Java. Bandung: Geological Research and Development Centre.Google Scholar
  11. Elliott, J. R., Copley, A. C., Holley, R., Scharer, K., & Parsons, B. (2013). The 2011 Mw7.1 Van (Eastern Turkey) earthquake. Journal of Geophysical Research: Solid Earth,118, 1619–1637.  https://doi.org/10.1002/jgrb.50117.CrossRefGoogle Scholar
  12. Febriani, F., Hattori, K., Widarto, D. S., Han, P., Yoshino, C., Nurdiyanto, B., Effendi, N., Maulana, I., & Gaffar, E. (2013). Audio Frequency Magnetotelluric Imaging of the Cimandiri Fault, West Java, Indonesia. Jurnal Geofisika. 14(1), 131–143.Google Scholar
  13. Handayani, L., Maryati, M., Kamtono, K., Mukti, M. M., & Sudrajat, Y. (2017). Audio-magnetotelluric modeling of cimandiri fault zone at Cibeber, Cianjur. Indonesian Journal on Geoscience,4, 39–47.  https://doi.org/10.17014/ijog.4.1.39-47.CrossRefGoogle Scholar
  14. Hubbard, J., & Shaw, J. H. (2009). Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M = 7.9) earthquake. Nature,458, 194–197.  https://doi.org/10.1038/nature07837.CrossRefGoogle Scholar
  15. Hubbard, J., Shaw, J. H., & Klinger, Y. (2010). Structural setting of the 2008 Mw7.9 Wenchuan, China, earthquake. Bulletin of the Seismological Society of America,100, 2713–2735.  https://doi.org/10.1785/0120090341.CrossRefGoogle Scholar
  16. Katili, J. A. (1970). Large transcurrent faults in Southeast Asia with special reference to Indonesia. Geologische Rundschau,59, 581–600.  https://doi.org/10.1007/BF01823809.CrossRefGoogle Scholar
  17. Koesmono, M., Kusnama, & Suwarna, N. (1996). Geological map of the Sindangbarang and Bandarwaru quadrangle, Java. Bandung: Geological Research and Development Centre.Google Scholar
  18. Louis, I. F., Raftopoulos, D., Goulis, I., & Louis, F. I. (2002). Geophysical imaging of faults and fault zones in the Urban. In International Conference on Earth Sciences and Electronics (pp. 269–285).Google Scholar
  19. Malod, J. A., Karta, K., Beslier, M. O., & Zen, M. T. (1995). From normal to oblique subduction: tectonic relationships between Java and Sumatra. Journal of Southeast Asian Earth Sciences,12, 85–93.  https://doi.org/10.1016/0743-9547(95)00023-2.CrossRefGoogle Scholar
  20. Marliyani, G. I., Arrowsmith, J. R., & Whipple, K. X. (2016). Characterization of slow slip rate faults in humid areas: cimandiri Fault zone, Indonesia. Journal of Geophysical Research,121, 2287–2308.  https://doi.org/10.1002/2016JF003846.CrossRefGoogle Scholar
  21. Meilano, I., Abidin, H. Z., Andreas, H., Gumilar, I., Sarsito, D., Hanifa, N. R., Rino, Harjono, H., Kato, T., Kimata, F., & Fukuda, Y. (2012). Slip rate estimation of the Lembang Fault West Java from geodetic observation. Journal of Disaster Research, 7, 12–18.  https://doi.org/10.20965/jdr.2012.p0012.CrossRefGoogle Scholar
  22. Mekkawi, M., & Saleh, A. (2007). Case studies of magnetotelluric method applied to mapping active faults. Acta Geodaetica et Geophysica Hungarica,42, 383–397.  https://doi.org/10.1556/AGeod.42.2007.4.2.CrossRefGoogle Scholar
  23. Natawidjaja, D. H., Bradley, K., Daryono, M. R., Aribowo, S., & Herrin, J. (2017). Late Quaternary eruption of the Ranau Caldera and new geological slip rates of the sumatran fault zone in Southern Sumatra, Indonesia. Geoscience Letters,4, 15.  https://doi.org/10.1186/s40562-017-0087-2.CrossRefGoogle Scholar
  24. Pueyo Anchuela, Ó., Lafuente, P., Arlegui, L., Liesa, C. L., & Simón, J. L. (2016). Geophysical characterization of buried active faults: the concud fault (Iberian Chain, NE Spain). International Journal of Earth Sciences,105, 2221–2239.  https://doi.org/10.1007/s00531-015-1283-y.CrossRefGoogle Scholar
  25. Rodi, W. L., & Mackie, R. L. (2001). Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics,66, 1–38.  https://doi.org/10.1190/1.1444893.CrossRefGoogle Scholar
  26. Schiller, D. M., Garrard, R. A, & Prasetyo, L. (1991). Eocene submarine fan sedimentation in southwest Java. In Proceedings 20th annual convention of Indonesian Petroleum Association (pp 125–182).Google Scholar
  27. Silver, E. A., Breen, N. A., Prasetyo, H., & Hussong, D. M. (1986). Multibeam study of the flores backarc thrust belt, Indonesia. Journal of Geophysical Research,91, 3489–3500.  https://doi.org/10.1029/JB091iB03p03489.CrossRefGoogle Scholar
  28. Simandjuntak, T. O., & Barber, A. J. (1996). Contrasting tectonic styles in the Neogene orogenic belts of Indonesia. In R. Hall & D. Blundell (Eds.), Tectonic evolution of Southeast Asia, geological society special publication No. 106 (pp. 185–201). London: Geological Society of London.  https://doi.org/10.1144/gsl.sp.1996.106.01.12.CrossRefGoogle Scholar
  29. Simpson, F., & Bahr, K. (2005). Practical Magnetotellurics. Cambridge: Cambridge University Press.  https://doi.org/10.1017/CBO9780511614095.CrossRefGoogle Scholar
  30. Sudjatmiko, S. (1972). Geological map of the Cianjur quadrangle, Java. Bandung: Geological Research and Development Centre.Google Scholar
  31. Sukamto, R. A. B. (1975). Geological map of the Jampang-Balekambang quadrangle, Java. Bandung: Geological Research and Development Centre.Google Scholar
  32. Supartoyo, Putranto, E. T., Djadja (2006). Earthquake hazard zone map of Indonesia, 3rd edn. Bandung: Center for Volcanology and Geological Hazard Mitigation.Google Scholar
  33. Susilohadi, S., Gaedicke, C., & Ehrhardt, A. (2005). Neogene structures and sedimentation history along the Sunda forearc basins off southwest Sumatra and southwest Java. Marine Geology,219, 133–154.  https://doi.org/10.1016/j.margeo.2005.05.001.CrossRefGoogle Scholar
  34. Syukri, M., & Saad, R. (2017). Seulimeum segment characteristic indicated by 2-D resistivity imaging method. NRIAG Journal of Astronomy and Geophysics,6, 210–217.  https://doi.org/10.1016/j.nrjag.2017.04.001.CrossRefGoogle Scholar
  35. Tank, S. B. (2014). Fault zone conductors in Northwest Turkey inferred from audio frequency magnetotellurics. Earth Planets Space,64, 729–742.  https://doi.org/10.5047/eps.2012.02.001.CrossRefGoogle Scholar
  36. van Bemmelen, R. W. (1949). The geology of Indonesia. The Hague: Govt. Printing Office.Google Scholar
  37. Visser, S. W. (1922). Inland and submarine epicenter of Sumatra and Java earthquakes. Batavia: Javasche Boekhandel en Drukkerij.Google Scholar
  38. Widarto, D. S., Trisuksmono, D., Sudrajat, Y., & Sumantri, I. (2000). Citra Tahanan Jenis Magnetotelurik Lintasan Jampang Kulon-Bogor Memotong Zona Sesar Cimandiri, Jawa Barat. In Proceedings of Research Center for Geotechnology, Indonesian Insitute of Sciences (LIPI), (pp. 7–28).Google Scholar
  39. Yamaguchi, S., Ogawa, Y., Fuji-ta, K., Ujihara, N., Inokuchi, H., & Oshiman, N. (2010). Audio-frequency magnetotelluric imaging of the hijima fault, Yamasaki fault system, southwest Japan. Earth Planets Space,62, 401–411.  https://doi.org/10.5047/eps.2009.12.007.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Center for GeotechnologyIndonesian Institute of Sciences (LIPI)BandungIndonesia
  2. 2.Geophysical EngineeringInstitut Teknologi Bandung (ITB)BandungIndonesia
  3. 3.Geological EngineeringInstitut Teknologi Bandung (ITB)BandungIndonesia

Personalised recommendations