Pure and Applied Geophysics

, Volume 176, Issue 11, pp 4661–4685 | Cite as

Earthquakes in the Garhwal Himalaya of the Central Seismic Gap: A Study of Historical and Present Seismicity and Their Implications to the Seismotectonics

  • R. Arun PrasathEmail author
  • Ajay Paul
  • Sandeep Singh


The historical and the present seismicity catalogues of the Garhwal Himalaya have been studied for their spatio-temporal variations and their implications on the seismotectonics of the region. The Micro-Seismicity, Fractal dimensions (Dc) and Frequency Magnitude Distribution (b-value) coupled with the available literature on geology, geomorphology and geophysics have been used to derive the seismotectonics and stress level changes in the region. The seismic cross sections for the relocated micro-seismicity, focal mechanisms and the swath profiles (for the presence of Physiographic Transition 2 (PT2) at the foothill of the Higher Himalaya) indicate the constant presence of the Mid-Crustal Ramp (MCR) in the detachment plane and its active seismogenic nature. The comparison of this scenario suggests the constant presence of seismogenically active MCR structure throughout the Central Seismic Gap. The seismic cross sections further reveal that the sensu stricto Main Central Thrust (Munsiari Thrust) is also a site of generation of the micro-seismicity in few segments due to its reactivation by thrusting along the MCR. The high fractal dimension value (Dc = 1.47) suggests the heterogeneous nature of the region, owing to the presence of local faults and transverse tectonics. The high stress accumulation in the Garhwal Himalaya with low b value (b = 0.70) suggests the high probability of occurrence of a larger or greater earthquake in the near-future. Further, the study also reveals that the 2011 Chamoli earthquake of M 5.0, preceded by a quiescence period of nearly a year shows different stress levels before and after its occurrence, which is well constrained with the increased moderate earthquake activity around the Chamoli region. This increased seismic activity and stress conditions in the Chamoli region suggest the high possibility of the occurrence of major earthquakes, hence the study recommend for a detailed seismic hazard evaluation of the region.


Earthquakes garhwal himalaya frequency magnitude distribution fractal dimensions seismotectonics mid-crustal ramp main central thrust 



We are grateful to the Director, Wadia Institute of Himalayan Geology, Dehradun, India for the support, encouragement and facilities. The Ministry of Earth Sciences, New Delhi (GoI) is being acknowledged for sponsoring the seismic network project in Garhwal Himalaya (vide. MoES/P.O.(Seismo)/1(79)/2009 dated 29/09/2010). We thank Prof. C. C. Pant for providing the Kumaun seismic network data. The Council of Scientific and Industrial Research (CSIR), New Delhi, India is being acknowledged for providing the Fellowship to RAP. Dr. Sujit Dasgupta, Deputy Director General of Geological Survey of India (Retired) is being acknowledged for his generosity and encouragement. RAP is thankful to Family and Friends (Mrs. Meenakshi, Dr. Mayank sir, Mr. Somak, Ms. Meena, Mr. Anshuman, Mr. Rakesh, Ms. Medha, Dr. Mahesh, Dr. Prakasam, Mr. Vinay, Mr. Manikandan, Dr. Joyeeta and Ms. Ojaswita) for their encouragement and support at various stages of the manuscript. This work is part of the PhD thesis of RAP, awarded from the Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, India.

Supplementary material

24_2019_2239_MOESM1_ESM.docx (130 kb)
Supplementary material 1 (DOCX 130 kb)
24_2019_2239_MOESM2_ESM.docx (15.4 mb)
Supplementary material 2 (DOCX 15731 kb)


  1. Aki, K. (1965). Maximum likelihood estimate of b in the formula log N = a-bM and its confidence limits. Bulletin of the Earthquake Research Institute, Tokyo Univ.,43, 237–239.Google Scholar
  2. Ambraseys, N., & Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159(1), 165–206.Google Scholar
  3. Ambraseys, N., & Bilham, R. (2000). A note on the Kangra Ms = 78 earthquake of 4 April 1905. Current Science,79(1), 45–50.Google Scholar
  4. Ambraseys, N., & Jackson, D. (2003). A note on early earthquakes in northern India and southern Tibet. Current Science,84(4), 570–582.Google Scholar
  5. Arita, K. (1983). Origin of the inverted metamorphism of the Lower Himalayas, central Nepal. Tectonophysics,95(1–2), 43–60.Google Scholar
  6. Armijo, R., Tapponnier, P., Mercier, J. L., & Han, T. L. (1986). Quaternary extension in southern Tibet: Field observations and tectonic implications. Journal of Geophysical Research: Solid Earth,91(B14), 13803–13872.Google Scholar
  7. Arora, B. R., Gahalaut, V. K., & Kumar, N. (2012). Structural control on along-strike variation in the seismicity of the northwest Himalaya. Journal of Asian Earth Sciences,57, 15–24.Google Scholar
  8. Auden, J. B. (1935). Traverses in the Himalaya. Records of Geological Survey of India,69(2), 123–167.Google Scholar
  9. Avouac, J. P., Meng, L., Wei, S., Wang, T., & Ampuero, J. P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience,8(9), 708.Google Scholar
  10. Banerjee, P., & Bürgmann, R. (2002). Convergence across the northwest Himalaya from GPS measurements. Geophysical Research Letters,29(13), 1652. Scholar
  11. Bapat, A., Kulkarni, R. C. & S. K. Guha .(1983). Catalogue of Earthquakes in India and Neighbour- hood From Historical Period up to 1979, (211 pp.) Indian Soc. of Earthquake Technol. RoorkeeGoogle Scholar
  12. Baranowski, J., Armbruster, J., Seeber, L., & Molnar, P. (1984). Focal depths and fault plane solutions of earthquakes and active tectonics of the Himalaya. Journal of Geophysical Research: Solid Earth,89(B8), 6918–6928.Google Scholar
  13. Bender, B. (1983). Maximum likelihood estimation of b values for magnitude grouped data. Bulletin of the Seismological Society of America,73(3), 831–851.Google Scholar
  14. Bhattacharya, S. N., & Kayal, J. R. (2005). Seismicity of the Himachal Himalaya: constraint from local seismic network. Geological Survey of India Special Publication,85, 71–79.Google Scholar
  15. Bilham, R. (1995). Location and magnitude of the 1833 Nepal earthquake and its relation to the rupture zones of contiguous great Himalayan earthquakes. Current Science,69(2), 101–128.Google Scholar
  16. Bilham, R., Bendick, R., & Wallace, K. (2003). Flexure of the Indian plate and intraplate earthquakes. Journal of Earth System Science,112(3), 315–329.Google Scholar
  17. Bilham, R., Bodin, P., & Jackson, M. (1995). Entertaining a great earthquake in western Nepal: historic inactivity and geodetic tests for the present state of strain. Journal of Nepal Geological Society,11(1), 73–78.Google Scholar
  18. Bilham, R., Larson, K., & Freymueller, J. (1997). GPS measurements of present-day convergence across the Nepal Himalaya. Nature,386(6620), 61.Google Scholar
  19. Bilham, R., & Ambraseys, N. (2005). Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000. Current Science,88, 1658–1663.Google Scholar
  20. Bufe, C. G. (1970). Frequency-magnitude variations during the 1970 Danville earthquake swarm. Earthquake Notes,41(3), 3–7.Google Scholar
  21. Burchfiel, B. C., Zhiliang, C., Hodges, K. V., Yuping, L., Royden, L. H., Changrong, D., et al. (1992). The South Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of America Special Papers,269, 1–41.Google Scholar
  22. Burg, J. P., Brunel, M., Gapais, D., Chen, G. M., & Liu, G. H. (1984). Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China). Journal of Structural Geology,6(5), 535–542.Google Scholar
  23. Caldwell, W. B., Klemperer, S. L., Lawrence, J. F., & Rai, S. S. (2013). Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking. Earth and Planetary Science Letters,367, 15–27.Google Scholar
  24. Catlos, E. J., Dubey, C. S., Harrison, T. M., & Edwards, M. A. (2004). Late Miocene movement within the Himalayan Main Central Thrust shear zone, Sikkim, north-east India. Journal of Metamorphic Geology,22(3), 207–226.Google Scholar
  25. Catlos, E. J., Dubey, C. S., Marston, R. A., & Harrison, T. M. (2007). Geochronologic constraints across the Main Central Thrust shear zone, Bhagirathi river (NW India): implications for Himalayan tectonics. Special Papers-Geological Society of America,419, 135.Google Scholar
  26. Catlos, E. J., Harrison, T. M., Kohn, M. J., Grove, M., Ryerson, F. J., Manning, C. E., et al. (2001). Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. Journal of Geophysical Research: Solid Earth,106(B8), 16177–16204.Google Scholar
  27. Célérier, J., Harrison, T. M., Webb, A. A. G., & Yin, A. (2009). The Kumaun and Garwhal Lesser Himalaya, India: Part 1. Structure and Stratigraphy. GSA Bulletin,121(9–10), 1262–1280.Google Scholar
  28. Chingtham, P., Chopra, S., Baskoutas, I., & Bansal, B. K. (2014). An assessment of seismicity parameters in northwest Himalaya and adjoining regions. Natural Hazards,71(3), 1599–1616.Google Scholar
  29. Dasgupta, S., Mukhopadhyay, M., & Nandy, D. R. (1987). Active transverse features in the central portion of the Himalaya. Tectonophysics,136(3–4), 255–264.Google Scholar
  30. DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1994). Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters,21(20), 2191–2194.Google Scholar
  31. Fan, W., & Shearer, P. M. (2015). Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves. Geophysical Research Letters,42(14), 5744–5752.Google Scholar
  32. Gahalaut, V. K. (2008). Major and great earthquakes and seismic gaps in the Himalayan arc. Memoir Geological Society of India, Golden Jubilee,66, 373–393.Google Scholar
  33. Gahalaut, V. K., & Arora, B. R. (2012). Segmentation of seismicity along the Himalayan Arc due to structural heterogeneities in the under-thrusting Indian plate and overriding Himalayan wedge. Episodes,35(4), 493–500.Google Scholar
  34. Gahalaut, V. K., & Kalpna, (2001). Himalayan mid-crustal ramp. Current Science,81, 1641–1646.Google Scholar
  35. Gahalaut, V. K., & Kundu, B. (2012). Possible influence of subducting ridges on the Himalayan arc and on the ruptures of great and major Himalayan earthquakes. Gondwana Research,21(4), 1080–1088.Google Scholar
  36. Gansser, A. (1964). Geology of the Himalayas. New York: Interscience.Google Scholar
  37. Gansser, A. (1980). The significance of the Himalayan suture zone. Tectonophysics,62(1–2), 37–52.Google Scholar
  38. Gautam, P. K., Gahalaut, V. K., Prajapati, S. K., Kumar, N., Yadav, R. K., Rana, N., et al. (2017). Continuous GPS measurements of crustal deformation in Garhwal–Kumaun Himalaya. Quaternary International,462, 124–129.Google Scholar
  39. Ghosal, A., Ghosh, U., & Kayal, J. R. (2012). A detailed b-value and fractal dimension study of the March 1999 Chamoli earthquake (Ms 6.6) aftershock sequence in western Himalaya. Geomatics Natural Hazards and Risk,3(3), 271–278.Google Scholar
  40. Gibowicz, S. J. (1973). Stress drop and aftershocks. Bulletin of the Seismological Society of America,63(4), 1433–1446.Google Scholar
  41. Grassberger, P., & Procaccia, I. (1983). Characterization of strange attractors. Physical Review Letters,50(5), 346.Google Scholar
  42. Guillot, S., Mahéo, G., De Sigoyer, J., Hattori, K. H., & Pecher, A. (2008). Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics,451(1–4), 225–241.Google Scholar
  43. Gupta, H., & Gahalaut, V. K. (2014). Seismotectonics and large earthquake generation in the Himalayan region. Gondwana research,25(1), 204–213.Google Scholar
  44. Gupta, S., Singh, J., & Joshi, K. C. (Eds.). (2001). Chamoli earthquake of 29 March, 1999, no. 53. In Bulletin Series - B. Lucknow: Geological Survey of India.Google Scholar
  45. Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America,34(4), 185–188.Google Scholar
  46. Gutenberg, B., Richter, C.F. (1954). Frequency and energy of earthquakes. In: B. Gutenberg, C.F. Richter (Eds.), Seismicity of the earth and associated phenomena, 2nd edn (pp. 17–19). Princeton, NJ: Princeton University Press.Google Scholar
  47. Harrison, M. T., Lovera, O. M., & Grove, M. (1997). New insights into the origin of two contrasting Himalayan granite belts. Geology,25(10), 899–902.Google Scholar
  48. Harvey, J. E., Burbank, D. W., & Bookhagen, B. (2015). Along-strike changes in Himalayan thrust geometry: Topographic and tectonic discontinuities in western Nepal. Lithosphere,7(5), 511–518.Google Scholar
  49. Hashimoto, H., Ohta, Y., & Akiba, C. (Eds.). (1973). Geology of the Nepal Himalayas. Sapporo: Himalayan Comm. Hokkaido University.Google Scholar
  50. Havskov, J., & Ottemoller, L. (1999). SEISAN earthquake analysis software. Seismological Research Letters,70(5), 532–534.Google Scholar
  51. Havskov, J., & Ottemöller, L. (2008). SEISAN: the earthquake analysis software. For Windows, Solaris, Linux and MACOSX. Version, 8.Google Scholar
  52. Hazarika, P., Kumar, M. R., Srijayanthi, G., Raju, P. S., Rao, N. P., & Srinagesh, D. (2010). Transverse tectonics in the Sikkim Himalaya: evidence from seismicity and focal-mechanism data. Bulletin of the Seismological Society of America,100(4), 1816–1822.Google Scholar
  53. Hazarika, D., Wadhawan, M., Paul, A., Kumar, N., & Borah, K. (2017). Geometry of the Main Himalayan Thrust and Moho beneath Satluj valley, northwest Himalaya: Constraints from receiver function analysis. Journal of Geophysical Research: Solid Earth,122(4), 2929–2945.Google Scholar
  54. Heim, A., & Gansser, A. (1939). Central Himalaya. Denkschr. Schweiz. Naturforschenden Ges,73, 1–245.Google Scholar
  55. Hetényi, G., Cattin, R., Berthet, T., Le Moigne, N., Chophel, J., Lechmann, S., Hammer, P., Drukpa, D., Sapkota, S.N., Gautier, S. & Thinley, K., (2016). Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies. Scientific reports, 6, 33866.Google Scholar
  56. Hirata, T. (1989a). Fractal dimension of fault systems in Japan: Fractal structure in rock fracture geometry at various scales. Pure Appl. Geophys.,131(1–2), 157–170. Scholar
  57. Hirata, T. (1989b). A correlation between the b value and the fractal dimension of earthquakes. Journal of Geophysical Research: Solid Earth,94(B6), 7507–7514.Google Scholar
  58. Hodges, K. V., Hurtado, J. M., & Whipple, K. X. (2001). Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics,20(6), 799–809.Google Scholar
  59. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T., & Whipple, K. (2004). Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth and Planetary Science Letters,220(3–4), 379–389.Google Scholar
  60. International Seismological Centre. (2016). Thatcham, United Kingdom: Bulletin of the International Seismological Centre.
  61. Jackson, M. E., & Bilham, R. (1994). 1991–1992 GPS measurements across the Nepal Himalaya. Geophysical Research Letters,21(12), 1169–1172.Google Scholar
  62. Jade, S. (2004). Estimates of plate velocity and crustal deformation in the Indian subcontinent using GPS geodesy. Current Science,86, 1443–1448.Google Scholar
  63. Jade, S., Mukul, M., Gaur, V. K., Kumar, K., Shrungeshwar, T. S., Satyal, G. S., et al. (2014). Contemporary deformation in the Kashmir-Himachal, Garhwal and Kumaon Himalaya: significant insights from 1995–2008 GPS time series. Journal of Geodesy,88(6), 539–557.Google Scholar
  64. Jain, R., Rastogi, B. K., & Dimri, V. P. (2003). Fractal dimension of the 1999 chamoli Earthquake from aftershock studies in garhwal himalaya. Pure and Applied Geophysics,160(12), 2329–2341.Google Scholar
  65. Jain, A. K., Singh, S., & Manickavasagam, R. M. (2002). Himalayan collision tectonics. Gondwana Research Group.Google Scholar
  66. Jordan, T. A., & Watts, A. B. (2005). Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collisional system. Earth and Planetary Science Letters,236(3–4), 732–750.Google Scholar
  67. Joshi, A., & Patel, R. C. (1997). Modelling of active lineaments for predicting a possible earthquake scenario around Dehradun, Garhwal Himalaya, India. Tectonophysics,283(1–4), 289–310.Google Scholar
  68. Kagan, Y. Y., & Knopoff, L. (1980). Spatial distribution of earthquakes: The two-point correlation function. Geophysical Journal International,62(2), 303–320.Google Scholar
  69. Kanaujia, J., Kumar, A., & Gupta, S. C. (2016). Three-dimensional velocity structure around Tehri region of the Garhwal Lesser Himalaya: constraints on geometry of the underthrusting Indian plate. Geophysical Journal International,205(2), 900–914.Google Scholar
  70. Kayal, J. R. (2000). Seismotectonic study of the two recent SCR earthquakes in central India. Journal of the Geological Society of India,55(2), 123–138.Google Scholar
  71. Kayal, J. R. (2001). Microearthquake activity in some parts of the Himalayas and the tectonic model. Tectonophysics,339(3), 331–351.Google Scholar
  72. Kayal, J. R. (2008). Microearthquake seismology and seismotectonics of South Asia. New York: Springer.Google Scholar
  73. Kayal, J. R., Ghosh, B., Chakraborty, P., & De, R. (1995). Aftershock Study of the October 20, 1991 earthquake at Garhwal Himalaya by a temporary MEQ network. Journal of Geological Society of India Memoir,30, 25–41.Google Scholar
  74. Kayal, J. R., Ram, S., Singh, O. P., Chakraborty, P. K., & Karunakar, G. (2003a). The March 1999 Chamoli earthquake in the Garhwal Himalaya: Aftershock characteristics and tectonic structure. Journal of the Geological Society of India,62(5), 558–580.Google Scholar
  75. Kayal, J. R., Ram, S., Singh, O. P., Chakraborty, P. K., & Karunakar, G. (2003b). Aftershocks of the March 1999 Chamoli earthquake and seismotectonic structure of the Garhwal Himalaya. Bulletin of the Seismological Society of America,93(1), 109–117.Google Scholar
  76. Khattri, K. N. (1987). Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalayas plate boundary. Tectonophysics,138(1), 79–92.Google Scholar
  77. Khattri, K. N. (1999). Probabilities of occurrence of great earthquakes in the Himalaya. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences,108(2), 87–92.Google Scholar
  78. Khattri, K.N., Gaur, V.K., Sinvhai, H. & Mithai. R. S. (1974). Tectonic imptications of seismological evidences in the Himalayas. Proc. Seminar Tectonics and Metallogeny of southeast Asia and the Far East, Calcutta, India, February, 1974. Geol. Surv. India, Misc. Publ. 34. Pt. III.Google Scholar
  79. Khattri, K. N., & Tyagi, A. K. (1983). The transverse tectonic features in the Himalaya. Tectonophysics,96(1–2), 19–29.Google Scholar
  80. Kobayashi, T., Morishita, Y., & Yarai, H. (2015). Detailed crustal deformation and fault rupture of the 2015 Gorkha earthquake, Nepal, revealed from ScanSARbased interferograms of ALOS-2. Earth, Planets and Space,67(1), 201.Google Scholar
  81. Kumar, S. (2012). Seismicity in the NW Himalaya India: fractal dimension, b-value mapping and temporal variation for hazard evaluation. Geoscience Research,3(1), 83–87.Google Scholar
  82. Kumar, M. R., Mishra, D. C., Singh, B., Raju, D. C. V., & Singh, M. (2013). Geodynamics of NW India: subduction, lithospheric flexure, ridges and seismicity. Journal of the Geological Society of India,81(1), 61–78.Google Scholar
  83. Kumar, N., Sharma, J., Arora, B. R., & Mukhopadhyay, S. (2009). Seismotectonic model of the Kangra-Chamba sector of Northwest Himalaya: constraints from joint hypocenter determination and focal mechanism. Bulletin of the Seismological Society of America,99(1), 95–109.Google Scholar
  84. Kumar, S., Wesnousky, S. G., Rockwell, T. K., Briggs, R. W., Thakur, V. C., & Jayangondaperumal, R. (2006). Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. Journal of Geophysical Research: Solid Earth,111, B03304.Google Scholar
  85. Kumar, S., Wesnousky, S. G., Jayangondaperumal, R., Nakata, T., Kumahara, Y., & Singh, V. (2010). Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: Timing, size, and spatial extent of great earthquakes. Journal of Geophysical Research: Solid Earth,115(B12), B12422. Scholar
  86. Lavé, J., & Avouac, J. P. (2000). Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research: Solid Earth,105(B3), 5735–5770.Google Scholar
  87. Lavé, J., & Avouac, J. P. (2001). Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research: Solid Earth,106(B11), 26561–26591.Google Scholar
  88. Leech, M. L., Singh, S., & Jain, A. K. (2007). Continuous metamorphic zircon growth and interpretation of U-Pb SHRIMP dating: An example from the Western Himalaya. International Geology Review,49(4), 313–328.Google Scholar
  89. Leech, M. L., Singh, S., Jain, A. K., Klemperer, S. L., & Manickavasagam, R. M. (2005). The onset of India-Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters,234(1–2), 83–97.Google Scholar
  90. Lienert, B. R., Berg, E., & Frazer, L. N. (1986). HYPOCENTER: An earthquake location method using centered, scaled, and adaptively damped least squares. Bulletin of the Seismological Society of America,76(3), 771–783.Google Scholar
  91. Lienert, B. R., & Havskov, J. (1995). A computer program for locating earthquakes both locally and globally. Seismological Research Letters,66(5), 26–36.Google Scholar
  92. Lilley, F. E. M., Singh, B. P., Arora, B. R., Srivastava, B. J., Prasad, S. N., & Sloane, M. N. (1981). A magnetometer array study in northwest India. Physics of the Earth and Planetary Interiors,25(3), 232–240.Google Scholar
  93. Lyon-Caen, H., & Molnar, P. (1985). Gravity anomalies, flexure of the Indian plate, and the structure, support and evolution of the Himalayas and Ganga Basin. Tectonics,4(6), 513–538.Google Scholar
  94. Mahesh, P., Gupta, S., Saikia, U., & Rai, S. S. (2015). Seismotectonics and crustal stress field in the Kumaon-Garhwal Himalaya. Tectonophysics,655, 124–138.Google Scholar
  95. Mahesh, P., Rai, S. S., Sivaram, K., Paul, A., Gupta, S., Sarma, R., et al. (2013). One-Dimensional Reference Velocity Model and Precise Locations of Earthquake Hypocenters in the Kumaon-Garhwal Himalaya. Bulletin of the Seismological Society of America,103(1), 328–339.Google Scholar
  96. Malik, J. N., Naik, S. P., Sahoo, S., Okumura, K., & Mohanty, A. (2017). Paleoseismic evidence of the CE 1505 (?) and CE 1803 earthquakes from the foothill zone of the Kumaon Himalaya along the Himalayan Frontal Thrust (HFT), India. Tectonophysics,714, 133–145.Google Scholar
  97. Mandal, P., Padhy, S., Rastogi, B. K., Satyanarayana, H. V. S., Kousalya, M., Vijayraghavan, R., et al. (2001). Aftershock activity and frequency-dependent low coda Qc in the epicentral region of the 1999 Chamoli earthquake of Mw 6.4. Pure and Applied Geophysics,158(9–10), 1719.Google Scholar
  98. Mandelbrot, B.B. (1983). The fractal geometry of nature. New York: W.H. Freeman and Company. 173, 51Google Scholar
  99. Middlemiss, C. S. (1885). A fossiliferous series in the Lower Himalaya Garhwal. Records of Geological Survey of India,18(2), 73–77.Google Scholar
  100. Miglani, R., Shahrukh, M., Israil, M., Gupta, P. K., Varshney, S. K., & Elena, S. (2014). Geoelectric structure estimated from magnetotelluric data from the Uttarakhand Himalaya. India. Journal of earth system science,123(8), 1907–1918.Google Scholar
  101. Misra, R. C., & Sharma, R. P. (1972). Structure of Almora Crystalline, Lesser Kumaun Himalaya. An interpretation. Himalayan Geology,2, 330–341.Google Scholar
  102. Mogi, K. (1962). Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. 2. Bulletin of the Earthquake Research Institute, Tokyo University,40(1962), 831–853.Google Scholar
  103. Mogi, K. (1967). Earthquakes and fractures. Tectonophysics,5(1), 35–55.Google Scholar
  104. Molnar, P. (1990). A review of the seismicity and the rates of active underthrusting and deformation at the Himalaya. Journal of Himalayan Geology,1(2), 131–154.Google Scholar
  105. Molnar, P., & Tapponnier, P. (1975). Cenozoic tectonics of Asia: Effects of a continental collision. Science,189(4201), 419–426.Google Scholar
  106. Molnar, P., & Tapponnier, P. (1977). The collision between India and Eurasia. Scientific American,236(4), 30–41.Google Scholar
  107. Mondal, S. K., Borghi, A., Roy, P. N. S., & Aoudia, A. (2016). GPS scaling exponent and past seismicity for seismic hazard assessment in Garhwal-Kumaun, Himalayan region. Natural Hazards,80(2), 1349–1367.Google Scholar
  108. Morell, K. D., Sandiford, M., Kohn, B., Codilean, A., Fülöp, R. H., & Ahmad, T. (2017). Current strain accumulation in the hinterland of the northwest Himalaya constrained by landscape analyses, basin-wide denudation rates, and low temperature thermochronology. Tectonophysics,721, 70–89.Google Scholar
  109. Morell, K. D., Sandiford, M., Rajendran, C. P., Rajendran, K., Alimanovic, A., Fink, D., et al. (2015). Geomorphology reveals active décollement geometry in the central Himalayan seismic gap. Lithosphere,7(3), 247–256.Google Scholar
  110. Mukhopadhyay, B. (2011). Clusters of moderate size earthquakes along Main Central Thrust (MCT) in Himalaya. International Journal of Geosciences,2(03), 318.Google Scholar
  111. Mukhopadhyay, B., Acharyya, A., & Dasgupta, S. (2011). Potential source zones for Himalayan earthquakes: Constraints from spatial–temporal clusters. Natural Hazards,57(2), 369–383.Google Scholar
  112. Mukhopadhyay, S., & Kayal, J. R. (2003). Seismic tomography structure of the 1999 Chamoli earthquake source area in the Garhwal Himalaya. Bulletin of the Seismological Society of America,93(4), 1854–1861.Google Scholar
  113. Mukhopadhyay, S., & Sharma, J. (2010). Crustal scale detachment in the Himalayas: A reappraisal. Geophysical Journal International,183(2), 850–860.Google Scholar
  114. Negi, S. S., & Paul, A. (2015). Space time clustering properties of seismicity in the Garhwal-Kumaun Himalaya, India. Himalayan Geology,36(1), 91–101.Google Scholar
  115. Ni, J., & Barazangi, M. (1984). Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalaya. Journal of Geophysical Research: Solid Earth,89(B2), 1147–1163.Google Scholar
  116. Öncel, A. O., Main, I., Alptekin, Ö., & Cowie, P. (1996). Spatial variations of the fractal properties of seismicity in the Anatolian fault zones. Tectonophysics,257(2–4), 189–202.Google Scholar
  117. Oppenheimer, D. H. (2000). Three-month performance evaluation of the Nanometrics, Inc., Libra Satellite Seismograph System in the northern California Seismic Network (No. 2000-330). US Geological Survey.Google Scholar
  118. Pacheco, J. F., Scholz, C. H., & Sykes, L. R. (1992). Changes in frequency–size relationship from small to large earthquakes. Nature,355(6355), 71–73.Google Scholar
  119. Pandey, M. R., Tandukar, R. P., Avouac, J. P., Lave, J., & Massot, J. P. (1995). Interseismic strain accumulation on the Himalayan crustal ramp (Nepal). Geophysical Research Letters,22(7), 751–754.Google Scholar
  120. Pandey, M. R., Tandukar, R. P., Avouac, J. P., Vergne, J., & Heritier, T. (1999). Seismotectonics of the Nepal Himalaya from a local seismic network. Journal of Asian Earth Sciences,17(5), 703–712.Google Scholar
  121. Parija, M. P., Kumar, S., Biswal, S., Kumar, N., & Mishra, S. K. (2016). A preliminary one-dimensional crustal velocity model for Himachal Pradesh, India. Journal of Seismology,20(1), 305–318.Google Scholar
  122. Patel, R. C., Singh, S., Asokan, A., Manickavasagam, R. M., & Jain, A. K. (1993). Extensional tectonics in the Himalayan orogen. Zanskar, NW India, Geological Society, London, Special Publications,74(1), 445–459.Google Scholar
  123. Paul, A. (2010). Evaluation and implications of seismic events in Garhwal-Kumaun region of Himalaya. Journal of the Geological Society of India,76(4), 414–418.Google Scholar
  124. Paul, J., Burgmann, R., Gaur, V. K., Bilham, R., Larson, K. M., Ananda, M. B., et al. (2001). The motion and active deformation of India. Geophysical Research Letters,28(4), 647–650.Google Scholar
  125. Paul, A., & Kumar, N. (2010). Estimates of source parameters of M4. 9 Kharsali earthquake using waveform modelling. Journal of Earth System Science,119(5), 731–743.Google Scholar
  126. Paul, A., Prasath, A. R., & Singh, R. (2015). Slip heterogeneities evaluated for earthquakes M > 4.0 using waveform modelling in the Garhwal region of Central Seismic Gap in Northwest Himalaya. India. Himalayan Geology,36(2), 153–160.Google Scholar
  127. Prasath, R. A., Paul, A., & Singh, S. (2017). Upper crustal stress and seismotectonics of the Garhwal Himalaya using small-to-moderate earthquakes: Implications to the local structures and free fluids. Journal of Asian Earth Sciences,135, 198–211.Google Scholar
  128. Priestley, K., Jackson, J., & McKenzie, D. (2008). Lithospheric structure and deep earthquakes beneath India, the Himalayas and southern Tibet. Geophysical Journal International,172(1), 345–362.Google Scholar
  129. Rajendran, C. P., John, B., Anandasabari, K., Sanwal, J., Rajendran, K., Kumar, P., et al. (2018). On the paleoseismic evidence of the 1803 earthquake rupture (or lack of it) along the frontal thrust of the Kumaun Himalaya. Tectonophysics,722, 227–234.Google Scholar
  130. Rajendran, K., Parameswaran, R. M., & Rajendran, C. P. (2017). Seismotectonic perspectives on the Himalayan arc and contiguous areas: Inferences from past and recent earthquakes. Earth-Science Reviews,173, 1–30.Google Scholar
  131. Rajendran, C. P., & Rajendran, K. (2005). The status of central seismic gap: a perspective based on the spatial and temporal aspects of the large Himalayan earthquakes. Tectonophysics, 395 (1–2), 19–39.Google Scholar
  132. Rao, M. R. (1973). The subsurface geology of the Indo-Gangetic plains. Geological Society of India,14(3), 217–242.Google Scholar
  133. Rawat, G., Arora, B. R., & Gupta, P. K. (2014). Electrical resistivity cross-section across the Garhwal Himalaya: Proxy to fluid-seismicity linkage. Tectonophysics,637, 68–79.Google Scholar
  134. Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth,90(B7), 5479–5495.Google Scholar
  135. Richards, A., Argles, T., Harris, N., Parrish, R., Ahmad, T., Darbyshire, F., et al. (2005). Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth and Planetary Science Letters,236(3), 773–796.Google Scholar
  136. Roy, P. N. S., & Mondal, S. K. (2012). Multifractal analysis of earthquakes in Kumaun Himalaya and its surrounding region. Journal of Earth System Science,121(4), 1033–1047.Google Scholar
  137. Rupke, J. (1974). Stratigraphic and structural evolution of the Kumaon Lesser Himalaya. Sedimentary Geology,11(2–4), 8189–87265.Google Scholar
  138. Sastri, V. V., Bhandari, L. L., Raju, A. T. R., & Datta, A. K. (1971). Tectonic framework and subsurface stratigraphy of the Ganga basin. Geological Society of India,12(3), 222–233.Google Scholar
  139. Sati, D., & Nautiyal, S. P. (1994). Possible role of Delhi-Haridwar subsurface ridge in generation of Uttarkashi earthquake, Garhwal Himalaya, India. Current Science,67, 39–44.Google Scholar
  140. Scherler, D., Bookhagen, B., & Strecker, M. R. (2014). Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India. Journal of Geophysical Research: Earth Surface,119(2), 83–105.Google Scholar
  141. Scholz, C. H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America,58(1), 399–415.Google Scholar
  142. Searle, M. P., Law, R. D., Godin, L., Larson, K. P., Streule, M. J., Cottle, J. M., et al. (2008). Defining the Himalayan main central thrust in Nepal. Journal of the Geological Society,165(2), 523–534.Google Scholar
  143. Seeber, L., & Armbruster, J. G. 1981. Great detachment earthquakes along the Himalayan Arc and long-term forecasting. In D.W. Simpson, P. G. Richards (eds.), Earthquake Prediction: An international review: Washington, DC, American Geophysical Union. Scholar
  144. Seeber, L., Armbruster, J. G., & Quittmeyer, R. C. (1981). Seismicity and continental subduction in the Himalayan arc. In H. K. Gupta, F. M. Delany (eds.), Zagros, Hindu-Kush Himalaya, Geodynamic Evolution: American Geophysical Union Geodynamic Monograph, vol. 3, (pp. 215–242). Scholar
  145. Singh, C. (2016). Spatial variation of seismic b-values across the NW Himalaya. Geomatics, Natural Hazards and Risk,7(2), 522–530.Google Scholar
  146. Singh, S. (2018). Protracted zircon growth in migmatites and In situ melt of Higher Himalayan Crystallines: U-Pb ages from Bhagirathi valley, NW Himalaya, India. Geoscience Frontiers. Scholar
  147. Singh, R., Prasath, R. A., Paul, A., & Kumar, N. (2018). Earthquake Swarm of Himachal Pradesh in Northwest Himalaya and its Seismotectonic implications. Physics of the Earth and Planetary Interiors,275, 44–55.Google Scholar
  148. Srinagesh, D., Singh, S. K., Suresh, G., Srinivas, D., Pérez-Campos, X., & Suresh, G. (2018). A study of Guptkashi, Uttarakhand earthquake of 6 February 2017 (M w 5.3) in the Himalayan arc and implications for ground motion estimation. Journal of Seismology,22(3), 789–803.Google Scholar
  149. Srivastava, P., & Mitra, G. (1994). Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold and thrust belt. Tectonics,13(1), 89–109.Google Scholar
  150. Szeliga, W., & Bilham, R. (2017). New Constraints on the Mechanism and Rupture Area for the 1905 M w 7.8 Kangra Earthquake, Northwest Himalaya. Bulletin of the Seismological Society of America,107(5), 2467–2479.Google Scholar
  151. Szeliga, W., Hough, S., Martin, S., & Bilham, R. (2010). Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bulletin of the Seismological Society of America,100(2), 570–584.Google Scholar
  152. Thakur, V. C. (1995). Geology of Dun Valley, Garhwal Himalaya, neotectonics and coeval deposition with fault-propagation folds. Journal of Himalayan Geology,6(2), 1–8.Google Scholar
  153. Thakur, V. C., & Pandey, A. K. (2004). Late Quaternary tectonic evolution of Dun in fault bend/propagated fold system, Garhwal Sub-Himalaya. Current Science,87(11), 1567–1576.Google Scholar
  154. Thakur, V. C., Sriram, V., & Mundepi, A. K. (2000). Seismotectonics of the great 1905 Kangra earthquake meizoseismal region in Kangra–Chamba, NW Himalaya. Tectonophysics,326(3–4), 289–298.Google Scholar
  155. Tosi, P. (1998). Seismogenic structure behaviour revealed by spatial clustering of seismicity in the Umbria-Marche Region (Central Italy). Annals of Geophysics,41(2), 215–224.Google Scholar
  156. Tsapanos, T. M. (1990). b-values of two tectonic parts in the circum-Pacific belt. Pure and Applied Geophysics,134(2), 229–242.Google Scholar
  157. Tyagi, A. K., Chaudhary, S., Rana, N., Sati, S.P. & Juyal, N. (2009). Identifying areas of differential uplift using steepness index in the Alaknanda basin, Garhwal Himalaya, Uttarakhand. Current Science, 97, 473–1477.Google Scholar
  158. Valdiya, K. S. (1976). Himalayan transverse faults and folds and their parallelism with subsurface structures of north Indian plains. Tectonophysics,32(3–4), 353–386.Google Scholar
  159. Valdiya, K. S. (1980a). The two intracrustal boundary thrusts of the Himalaya. Tectonophysics,66(4), 323–348.Google Scholar
  160. Valdiya, K. S. (1980b). Geology of Kumaun Lesser Himalaya. Dehradun: Wadia Institute of Himalayan Geology.Google Scholar
  161. Valdiya, K.S. & Sanwal, J. (2017). Himalayan Mobile Belt: The Main Arc. In Developments in earth surface processes, vol. 22, pp. 31–109. Elsevier.Google Scholar
  162. Waldhauser, F. (2001). hypoDD—A program to compute double‐difference hypocenter locations (hypoDD version 1.0‐03/2001). US Geol. Surv. Open File Rep., 01, 113.Google Scholar
  163. Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America,90(6), 1353–1368.Google Scholar
  164. Wason, H. R., Sharma, M. L., Khan, P. K., Kapoor, K., Nandini, D., & Kara, V. (2002). Analysis of aftershocks of the Chamoli Earthquake of March 29, 1999 using broadband seismic data. Journal of Himalayan Geology,23, 7–18.Google Scholar
  165. Webb, A. A. G., Yin, A., Harrison, T. M., Célérier, J., Gehrels, G. E., Manning, C. E., et al. (2011). Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogen. Geosphere,7(4), 1013–1061.Google Scholar
  166. Webb, A. A. G. (2013). Preliminary balanced palinspastic reconstruction of Cenozoic deformation across the Himachal Himalaya (northwestern India). Geosphere,9(3), 572–587.Google Scholar
  167. Wesnousky, S. G., Kumar, S., Mohindra, R., & Thakur, V. C. (1999). Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics,18(6), 967–976.Google Scholar
  168. Wiemer, S. (2001). A software package to analyse seismicity: ZMAP. Seismological Research Letters,72(3), 373–382.Google Scholar
  169. Wiemer, S., & Wyss, M. (1997). Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times? Journal of Geophysical Research: Solid Earth,102(B7), 15115–15128.Google Scholar
  170. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America,90(4), 859–869.Google Scholar
  171. Wobus, C., Heimsath, A., Whipple, K., & Hodges, K. (2005). Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature,434(7036), 1008.Google Scholar
  172. Wobus, C. W., Hodges, K. V., & Whipple, K. X. (2003). Has focused denudation sustained active thrusting at the Himalayan topographic front? Geology,31(10), 861–864.Google Scholar
  173. Wyss, M. (1973). Towards a physical understanding of the earthquake frequency distribution. Geophysical Journal International,31(4), 341–359.Google Scholar
  174. Wyss, M., Hasegawa, A., Wiemer, S., & Umino, N. (1999). Quantitative mapping of precursory seismic quiescence before the 1989, M 7.1 off-Sanriku earthquake, Japan.Google Scholar
  175. Yeats, R. S., Nakata, T., Farah, A., Fort, M., Mirza, M. A., Pandey, M. R. & Stein, R. S. (1992). Major active faults of the world: Results of IGCP project 206. The Himalayan frontal fault system.Annales Tectonicae, 6, 85–98.Google Scholar
  176. Yin, A. (2006). Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews,76(1–2), 1–131.Google Scholar
  177. Zhang, L., Li, J., Liao, W., & Wang, Q. (2016). Source ruptures process of the 2015 Gorkha, Nepal Mw7.9 earthquake and its tectonic implications. Geodesy and Geodynamics,7(2), 124–131.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Geophysics GroupWadia Institute of Himalayan GeologyDehradunIndia
  2. 2.Department of Earth SciencesIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations