Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 11, pp 4881–4905 | Cite as

Fundamental Solutions to Static and Dynamic Loads for Homogeneous Reduced Micropolar Half-Space

  • Anjali C. Dhabu
  • S. T. G. RaghukanthEmail author
Article
  • 93 Downloads

Abstract

Analytical expressions for displacements and rotations in a homogeneous reduced micropolar half-space subjected to a finite buried source are derived using the method of potentials. Explicit solutions for displacements and rotations are derived for a uniformly distributed force acting over a circular region in the horizontal or vertical direction. The obtained solutions for displacements are validated against those available in literature for a classical elastic half-space. Finally, Green’s functions for displacements and rotations are derived for a unit impulse applied in the horizontal or vertical direction. In addition to analytical solutions, the paper also compares the dispersion phenomenon of compression and shear waves propagating in a reduced micropolar half-space with different material properties.

Keywords

Reduced micropolar medium seismic wave propagation Green’s functions dispersion analysis 

Notes

References

  1. Abreu, R., Thomas, C., & Durand, S. (2018). Effect of observed micropolar motions on wave propagation in deep Earth minerals. Physics of the Earth and Planetary Interiors, 276, 215–225.CrossRefGoogle Scholar
  2. Bouchon, M. (1981). A simple method to calculate Green’s functions for elastic layered media. Bulletin of the Seismological Society of America, 71(4), 959–971.Google Scholar
  3. Cosserat, E., & Cosserat, F. (1909). Theory of deformable bodies. Hondo: Scientific Library.Google Scholar
  4. Eringen, A. C. (1999). Microcontinuum field theories: I. Foundations and solids. New York: Springer.CrossRefGoogle Scholar
  5. Gade, M., & Raghukanth, S. T. G. (2015). Seismic ground motion in micropolar elastic half-space. Applied Mathematical Modelling, 39(23–24), 7244–7265.CrossRefGoogle Scholar
  6. Grekova, E. F., Kulesh, M. A., & Herman, G. C. (2009). Waves in linear elastic media with microrotations, part 2: Isotropic reduced Cosserat model. Bulletin of the Seismological Society of America, 99(2B), 1423–1428.CrossRefGoogle Scholar
  7. Hart, G. C., Lew, M., & DiJulio, R. M. (1975). Torsional response of high-rise buildings. Journal of the Structural Division, 101(2), 397–416.Google Scholar
  8. Hassanpour, S., & Heppler, G. R. (2017). Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations. Mathematics and Mechanics of Solids, 22(2), 224–242.CrossRefGoogle Scholar
  9. Hisada, Y. (1994). An efficient method for computing Green’s functions for a layered half-space at large epicentral distances. Bulletin of the Seismological Society of America, 84(5), 1456–1472.Google Scholar
  10. Igel, H., Schreiber, U., Flaws, A., Schuberth, B., Velikoseltsev, A., & Cochard, A. (2005). Rotational motions induced by the M.81 Tokachi-oki earthquake. Geophysical Research Letters, 8, 32.Google Scholar
  11. Kanth, S. T. (2008). Source mechanism model for ground motion simulation. Applied Mathematical Modelling, 32(7), 1417–1435.CrossRefGoogle Scholar
  12. Kennett, B. (1983). Seismic wave propagation in stratified media. Canberra: ANU E Press.Google Scholar
  13. Kulesh, M. (2009). Waves in linear elastic media with microrotations, Part 1: Isotropic full Cosserat model. Bulletin of the Seismological Society of America, 99(2 B), 1416–1422.CrossRefGoogle Scholar
  14. Kurnosov, A., Marquardt, H., Frost, D. J., Boffa Ballaran, T., & Ziberna, L. (2017). Evidence for a \(\mathrm{Fe}^{3+}\)-rich pyrolitic lower mantle from (Al, Fe)-bearing bridgmanite elasticity data. Nature, 543(7646), 543–546.CrossRefGoogle Scholar
  15. Nigbor, R. L. (1994). Six-degree-of-freedom ground-motion measurement. Bulletin of the Seismological Society of America, 84(5), 1665–1669.Google Scholar
  16. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  17. Pak, R. Y. S. (1987). Asymmetric wave propagation in an elastic half-space by a method of potentials. Journal of Applied Mechanics-Transactions of the ASME, 54(1), 121–126.CrossRefGoogle Scholar
  18. Pak, R. Y. S., & Guzina, B. (2002). Three-dimensional Green’s functions for a multilayered half-space in displacement potentials. Journal of Engineering Mechanics, 128(4), 449–461.CrossRefGoogle Scholar
  19. Pekeris, C. L., & Longman, I. M. (1958). The motion of the surface of a uniform elastic half-space produced by a buried torque-pulse. Geophysical Journal of the Royal Astronomical Society, 1(2), 146–153.CrossRefGoogle Scholar
  20. Piessens, R. (2000). The Hankel transform. The Transforms and Applications Handbook, 2, 9.Google Scholar
  21. Schwartz, L. M., Johnson, D. L., & Feng, S. (1984). Vibrational modes in granular materials. Physical Review Letters, 52(10), 831–834.CrossRefGoogle Scholar
  22. Takeo, M. (1998). Ground rotational motions recorded in near-source region of earthquakes. Geophysical Research Letters, 25(6), 789–792.CrossRefGoogle Scholar
  23. Teisseyre, R. (1973). Earthquake processes in a micromorphic continuum. Pure and Applied Geophysics PAGEOPH, 102(1), 15–28.CrossRefGoogle Scholar
  24. Teisseyre, R. (2011). Why rotation seismology: Confrontation between classic and asymmetric theories. Bulletin of the Seismological Society of America, 101(4), 1683–1691.CrossRefGoogle Scholar
  25. Tsai, N. C., & Housner, G. W. (1970). Calculation of surface motions of a layered half-space. Bulletin of the Seismological Society of America, 60(5), 1625–1651.Google Scholar
  26. Yin, J., Nigbor, R. L., Chen, Q., & Steidl, J. (2016). Engineering analysis of measured rotational ground motions at GVDA. Soil Dynamics and Earthquake Engineering, 87, 125–137.CrossRefGoogle Scholar
  27. Yong, Y., Zhang, R., & Yu, J. (1997a). Motion of foundation on a layered soil medium—I. Impedance characteristics. Soil Dynamics and Earthquake Engineering, 16(5), 295–306.CrossRefGoogle Scholar
  28. Yong, Y., Zhang, R., & Yu, J. (1997b). Motion of foundation on a layered soil medium—II. Response analysis. Soil Dynamics and Earthquake Engineering, 16(5), 307–316.CrossRefGoogle Scholar
  29. Zerva, A., & Zhang, O. (1997). Correlation patterns in characteristics of spatially variable seismic ground motions. Earthquake Engineering and Structural Dynamics, 26(1), 19–39.CrossRefGoogle Scholar
  30. Zhang, R. (2000). Some observations of modelling of wave motion in layer-based elastic media. Journal of Sound and Vibration, 229(5), 1193–1212.CrossRefGoogle Scholar
  31. Zhang, R., Yong, Y., & Lin, Y. K. (1991a). Earthquake ground motion modeling. I: Deterministic point source. Journal of Engineering Mechanics, 117(9), 2114–2132.CrossRefGoogle Scholar
  32. Zhang, R., Yong, Y., & Lin, Y. K. (1991b). Earthquake ground motion modeling. II: Stochastic line source. Journal of Engineering Mechanics, 117(9), 2133–2148.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringIIT MadrasChennaiIndia

Personalised recommendations