Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 11, pp 5203–5215 | Cite as

Spatial and Temporal Variability of Semidiurnal Internal Tide Energetics in the Western Bay of Bengal

  • Sachiko MohantyEmail author
  • A. D. Rao
  • B. Yadidya
Article

Abstract

The three-dimensional Massachusetts Institute of Technology general circulation model (MITgcm) with time-dependent forcing is implemented to investigate the spatial and temporal variability of internal tides over the eastern coast of India. Numerical simulations are conducted for a number of different months of the year for which in situ observations are available at high temporal resolution. During the months of November–December and March–April, peak spectral estimates of density variability are evident in the semidiurnal frequency band in both observations and simulations, while during August, variability is dominantly in the near-inertial frequency band. Empirical orthogonal functions (EOF) analysis is applied to decompose the baroclinic tidal currents into vertical modes. The results show that about 70–80% of the total variance is in the first mode, while the first three modes represent 90–95% of the total variance in all seasons. Internal tide characteristics such as phase speed, group speed, and wavelength are largest in the postmonsoon season. The magnitude of the computed energy flux is greatest during November, while the direction of propagation of internal tides is almost unchanged through the year. The available potential energy peaks in November (20 kJ m−2) and is smallest in August (14 kJ m−2). Calculation of the energy budget shows that the energy conversion rate from barotropic forcing to internal tides is about 85% in November but only about 46% in August.

Keywords

Western Bay of Bengal internal tides energy budget available potential energy 

Notes

Acknowledgements

The work was funded by the Naval Research Board (NRB), New Delhi for investigations on IWs in the Bay of Bengal through a collaborative project between the IITD, CSIR-National Institute of Oceanography Regional Centre, Visakhapatnam, and Andhra University, Visakhapatnam. The authors thank the Indian Institute of Technology Delhi HPC facility and Department of Science and Technology, Government of India for sanctioning a financial grant (DST-FIST, 2014) for computational resources. The bathymetry data were obtained through the website (http://apdrc.soest.hawaii.edu/datadoc/io_etopo.php). The barotropic tidal velocity data obtained from the TOPEX/Poseidon global tidal model (http://volkov.oce.orst.edu/tides/tpxo8_atlas.html) are gratefully acknowledged.

References

  1. Carter, G. S., Gregg, M. C., & Lien, R. C. (2005). Internal waves, solitary-like waves, and mixing on the Monterey Bay shelf. Continental Shelf Research,25(12), 1499–1520.CrossRefGoogle Scholar
  2. Carter, G. S., Merrifield, M. A., Becker, J. M., Katsumata, K., Gregg, M. C., Luther, D. S., et al. (2008). Energetics of M 2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. Journal of Physical Oceanography,38(10), 2205–2223.CrossRefGoogle Scholar
  3. Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation,19(90), 297–301.CrossRefGoogle Scholar
  4. D’Asaro, E. A., Lien, R. C., & Henyey, F. (2007). High-frequency internal waves on the Oregon continental shelf. Journal of Physical Oceanography,37(7), 1956–1967.CrossRefGoogle Scholar
  5. Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology,19(2), 183–204.CrossRefGoogle Scholar
  6. Holloway, P. E. (1996). A numerical model of internal tides with application to the Australian North West Shelf. Journal of Physical Oceanography,26(1), 21–37.CrossRefGoogle Scholar
  7. Hsu, M. K., Liu, A. K., & Liu, C. (2000). A study of internal waves in the China Seas and Yellow Sea using SAR. Continental Shelf Research,20(4), 389–410.CrossRefGoogle Scholar
  8. Joshi, M., Rao, A. D., Mohanty, S., Pradhan, H. K., Murty, V. S., & Prasad, K. V. S. R. (2017). Internal waves over the shelf in the western Bay of Bengal: A case study. Ocean Dynamics,67(1), 147–161.CrossRefGoogle Scholar
  9. Kang, D., & Fringer, O. (2012). Energetics of barotropic and baroclinic tides in the Monterey Bay area. Journal of Physical Oceanography,42(2), 272–290.CrossRefGoogle Scholar
  10. Kunze, E., Rosenfeld, L. K., Carter, G. S., & Gregg, M. C. (2002). Internal waves in Monterey submarine canyon. Journal of Physical Oceanography,32(6), 1890–1913.CrossRefGoogle Scholar
  11. LaFond, E. C., & LaFond, K. G. (1968). Studies of oceanic circulation in the Bay of Bengal. Bulletin of National Institute of Sciences of India,38, 164–183.Google Scholar
  12. LaFond, K. G., & Rao, C. P. (1954). Vertical oscillations of tidal periods in the temperature structure of the sea. Andhra University Memoirs,1, 109–116.Google Scholar
  13. Large, W. G., McWilliams, J. C., & Doney, S. C. (1994). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics,32(4), 363–403.CrossRefGoogle Scholar
  14. Locarnini, R. A., et al. (2013). World ocean atlas 2013, volume 1: Temperature. NOAA Atlas NESDIS,73, 40.Google Scholar
  15. Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. (1997). A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research: Oceans,102(C3), 5753–5766.CrossRefGoogle Scholar
  16. Merrifield, M. A., & Holloway, P. E. (2002). Model estimates of M2 internal tide energetics at the Hawaiian Ridge. Journal of Geophysical Research: Oceans,107(C8), 1–12.CrossRefGoogle Scholar
  17. Mohanty, S., Rao, A. D., & Latha, G. (2018). Energetics of semidiurnal internal tides in the Andaman Sea. Journal of Geophysical Research-Oceans.  https://doi.org/10.1029/2018jc013852.CrossRefGoogle Scholar
  18. Mohanty, S., Rao, A. D., & Pradhan, H. K. (2017a). Effect of seasonal and cyclonic winds on internal tides over the Bay of Bengal. Natural Hazards,87(2), 1109–1124.CrossRefGoogle Scholar
  19. Mohanty, S., Rao, A. D., & Pradhan, H. K. (2017b). Estimates of internal tide energetics in the western Bay of Bengal. IEEE Journal of Oceanic Engineering,99, 1–9.Google Scholar
  20. Morozov, E. G. (2018). Oceanic internal tides: Observations, analysis and modeling: A global view. Berlin: Springer.CrossRefGoogle Scholar
  21. Munk, Walter, & Wunsch, Carl. (1998). Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers,45(12), 1977–2010.CrossRefGoogle Scholar
  22. Nagai, T., & Hibiya, T. (2015). Internal tides and associated vertical mixing in the Indonesian Archipelago. Journal of Geophysical Research: Oceans,120(5), 3373–3390.Google Scholar
  23. Nash, J. D., Alford, M. H., & Kunze, E. (2005). Estimating internal wave energy fluxes in the ocean. Journal of Atmospheric and Oceanic Technology,22(10), 1551–1570.CrossRefGoogle Scholar
  24. Nash, J. D., Kunze, E., Toole, J. M., & Schmitt, R. W. (2004). Internal tide reflection and turbulent mixing on the continental slope. Journal of Physical Oceanography,34(5), 1117–1134.CrossRefGoogle Scholar
  25. Niwa, Y., & Hibiya, T. (2004). Three-dimensional numerical simulation of M2 internal tides in the East China Sea. Journal of Geophysical Research: Oceans, 109(C4).Google Scholar
  26. Pradhan, H. K., Rao, A. D., & Mohanty, S. (2016). Inter-seasonal variability of internal tides in the western Bay of Bengal. Natural Hazards,84(2), 809–820.CrossRefGoogle Scholar
  27. Prasad, K. V. S. R., & Rajasekhar, M. (2011). Space borne SAR observations of oceanic internal waves in North Bay of Bengal. Natural Hazards,57(3), 657–667.CrossRefGoogle Scholar
  28. Rao, A. D., Babu, S. V., Prasad, K. V. S. R., Murty, T. R., Sadhuram, Y., & Mahapatra, D. K. (2010). Investigation of the generation and propagation of low frequency internal waves: A case study for the east coast of India. Estuarine, Coastal and Shelf Science,88(1), 143–152.CrossRefGoogle Scholar
  29. Rudnick, D. L., Boyd, T. J., Brainard, R. E., Carter, G. S., Egbert, G. D., Gregg, M. C., et al. (2003). From tides to mixing along the Hawaiian Ridge. Science,301(5631), 355–357.CrossRefGoogle Scholar
  30. Sindhu, B., Suresh, I., Unnikrishnan, A. S., Bhatkar, N. V., Neetu, S., & Michael, G. S. (2007). Improved bathymetric datasets for the shallow water regions in the Indian Ocean. Journal of Earth System Science,116(3), 261–274.CrossRefGoogle Scholar
  31. Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review,91(3), 99–164.CrossRefGoogle Scholar
  32. Vlasenko, V., Stashchuk, N., & Hutter, K. (2005). Baroclinic tides: Theoretical modeling and observational evidence. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. Zhao, Z., Alford, M. H., Lien, R. C., Gregg, M. C., & Carter, G. S. (2012). Internal tides and mixing in a submarine canyon with time-varying stratification. Journal of Physical Oceanography,42(12), 2121–2142.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Atmospheric SciencesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations