Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 11, pp 5177–5201 | Cite as

Surface Temperature Evaluation and Future Projections Over India Using CMIP5 Models

  • Praveen Kumar
  • P. Parth SarthiEmail author
Article
  • 161 Downloads

Abstract

The rapid change in Earth’s surface temperature is affecting the patterns of weather and climate. Such changes have a large impact, especially on agriculture and water resources throughout the world, and therefore, the projection of surface temperature in the near future is an urgent need. The current study is aimed to evaluate model performance in simulating the surface temperature (T), surface maximum temperature (Tmax) and surface minimum temperature (Tmin) over the land points of India under historical experiment (1971–2005) of the Coupled Model Intercomparison Project phase 5 (CMIP5). Eyeball verification of spatial distribution, bias, skill score and Taylor diagram is used to evaluate the model’s performance during 1971–2005. The relatively better performing models are used for future projection (2021–2055) of temperature under representative concentrations pathways (RCPs) 4.5 and 8.5, and the Student's t test at 99% and 95% confidence levels are applied for a limit of certainty. Under RCPs 4.5 and 8.5, an increase of 0.5–0.6 °C in T at a 99% confidence level is noticed over the regions of North Central (NC), North West (NW) and West-Central (WC) India, while an increase of 0.2–0.5 °C is found over other regions of India. The Mann–Kendall (MK) test, at a 95% confidence level, suggests the maximum warming trend of Tmax in March/April and Tmin in December/February for the period of 1971–2005, and a similar trend in Tmax (March/April) and Tmin (December/February) may be possible in the near future (2021–2055).

Keywords

Climate models CMIP5 simulation representative concentration pathways surface temperature Mann–Kendall test 

Notes

Acknowledgements

The authors acknowledge the World Climate Research Program’s (WCRP’s) Working Group on CMIP5, and thank the climate modeling groups for producing and making available their CMIP5 model outputs. The authors wish to express their gratitude towards the India Meteorological Department (IMD) for providing the gridded data for this study.

References

  1. Aggarwal, P. K., & Sinha, K. (1993). Effect of probable increase in carbon dioxide and temperature on wheat yields in India. Water Technology Center Indian Agricultural Research Institute New Delhi,48, 811–814.Google Scholar
  2. Arora, M., Goel, N. K., & Singh, P. (2005). Evaluation of temperature trends over India. Hydrological Sciences Journal,50(1), 37–41.Google Scholar
  3. Basha, G., Kishore, P., Ratnam, M. V., Jayaraman, A., Kouchak, A. A., & Taha, B. (2017). Historical and projected surface temperature over India during the 20th and 21st century. Scientific Reports,7, 2987.  https://doi.org/10.1038/s41598-017-02130-3.CrossRefGoogle Scholar
  4. Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2007). Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climate Change,85, 159–177.  https://doi.org/10.1007/s10584-006-9196-1.CrossRefGoogle Scholar
  5. Bitz, M. (2014). Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environmental Research Letters.  https://doi.org/10.1088/1748-9326/9/5/055007.CrossRefGoogle Scholar
  6. Caesar, J., Alexander, L., & Vose, R. (2006). Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research,111, D05101.Google Scholar
  7. Chaturvedi, R. K., Joshi, J., Jayaraman, M., et al. (2012). Multi-model climate change projections for India under representative concentration pathways. Current Science,103, 791–802.Google Scholar
  8. Chen, L., Frauenfeld, O. W. (2014). Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models. Journal of Climate, 27(11), 3920–3937.  https://doi.org/10.1175/JCLI-D-13-00465.1.CrossRefGoogle Scholar
  9. Clarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J., Richels, R. (2007). Scenarios of the greenhouse gas emission and atmospheric concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Washington, USA, Department of Energy, Office of Biological & Environmental Research. p. 154.Google Scholar
  10. Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., Wehner, M. (2013). Long-term climate change: Projections, commitments and irreversibility. Clim. Chang. 2013 Phys. Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim. Chang. 1029–1136.  https://doi.org/10.1017/cbo9781107415324.024.
  11. Dunne, J. P., Stouffer, R. J., & John, J. G. (2013). Reductions in labour capacity from heat stress under climate warming Nat. Climate Change,3, 563–566.Google Scholar
  12. Halder, S., et al. (2015). Investigating the impact of land-use-land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model. Hydrology and Earth System Sciences,12, 6575–6633.Google Scholar
  13. Hallegatte, S., Hourcade, J.-C., & Dumas, P. (2007). Why economic dynamics matter in assessing climate change damages: Illustration on extreme events. Ecological Economics,62, 330–340.Google Scholar
  14. Hingane, L. S., Rupa Kumar, K., & Ramana Murthy, B. V. (1985). Long term trends of surface air temperature in India. Journal of Climatology,5, 521–528.Google Scholar
  15. IPCC. (2001). The scientific basis: Third assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  16. IPCC. (2007). Climate Change 2007: The physical science basis. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Contribution of working group I to the fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  17. IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, RK Pachauri and LA Meyer (eds.) IPCC, Geneva, Switzerland, p. 151.Google Scholar
  18. Jain, S. K., & Kumar, V. (2012). Trend analysis of rainfall and temperature data for India. Current Science,102, 37–49.Google Scholar
  19. Jourdain, N. C., Gupta, A. Sen, Taschetto, A. S., Ummenhofer, C. C., Moise, A. F., & Ashok, K. (2013). The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Climate Dynamics,41, 3073–3102.  https://doi.org/10.1007/s00382-013-1676-1.CrossRefGoogle Scholar
  20. Kalra, N., Chakraborty, D., Sharma, A., et al. (2008). Effect of increasing temperature on yield of some winter crops in northwest India. Current Science,94, 82–88.Google Scholar
  21. Khaliq, M. N., Ouarda, T. B. M. J., Gachon, P., Sushama, L., & St Hilaire, A. (2009). Identification of hydrologic trends in the presence of serial and cross correlations. A review of selected methods and their application to annual flow regimes of Canadian rivers. Journal of Hydrology,368, 117–130.Google Scholar
  22. Kothawale, D. R., Revadekar, J. V., & Kumar, K. R. (2010). Recent trends in pre-monsoon daily temperature extremes over India. Journal of Earth System Science,119(1), 51–65.Google Scholar
  23. Kothawale, D. R., & Rupa Kumar, K. (2005). On the recent changes in surface temperature trends over India. Geophysical Research Letters,32, L18714.  https://doi.org/10.1029/2005GL023528.CrossRefGoogle Scholar
  24. Kothyari, U. C., & Singh, V. P. (1996). Rainfall and temperature trends in India. Hydrological Processes,10, 357–372.Google Scholar
  25. Kumar, K. R., Kumar, K., Prasanna, V., Kamala, K., Desphnade, N. R., Patwardhan, S. K., et al. (2003). Future climate scenario. Climate Change and Indian vulnerability assessment and adaptation (pp. 69–127). Hyderabad: Universities Press (India) Pvt Ltd.Google Scholar
  26. Kumar, K. R., Sahai, A. K., Kumar, K. K., Patwardhan, S. K., Mishra, P. K., Revadekar, J. V., et al. (2013). High-resolution climate change scenarios for India for the 21st century. Current Science,90(3), 10.Google Scholar
  27. Lal, M., Nozawa, T., Emori, S., Harasawa, H., Takahashi, K., Kimoto, M., et al. (2001). Future climate change : Implications for Indian summer monsoon and its variability. Current Science,81(9), 1196–1208.Google Scholar
  28. Li, G., Xi, S. P., & Du, Y. (2016a). A robust but spurious pattern of climate change in model projections over the tropical Indian Ocean. Journal of Climate,29, 5589–5608.Google Scholar
  29. Li, G., Xi, S. P., Du, Y., & Luo, Y. (2016b). Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: the warming pattern in CMIP5 multi-model ensemble. Climate Dynamics,47, 3817–3831.Google Scholar
  30. Lohmann, U., Stier, P., Hoose, C., Ferrachat, S., Kloster, S., Roeckner, E., et al. (2007). Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmospheric Chemistry and Physics,7, 3425–3446.Google Scholar
  31. Maity et al. (2016) Do CMIP5 models hint at a warmer and wetter India in the 21st century? Published June 2016, 7(2):280–295.  https://doi.org/10.2166/wcc.2015.126.
  32. Mavromatis, T., & Stathis, D. (2011). Response of the water balance in Greece to temperature and precipitation trends. Theoretical and Applied Climatology,104, 13–24.  https://doi.org/10.1007/s00704-010-0320-9.CrossRefGoogle Scholar
  33. Maxino, C. C., McAvaney, B. J., Pitman, A. J., & Perkins, S. E. (2008). Ranking the AR4 climate models over the Murray-Darling Basin using simulated maximum temperature, minimum temperature and precipitation. International Journal of Climatology,28, 1097–1112.Google Scholar
  34. McMichael, A. J., Woodruff, R. E., & Hales, S. (2006). Climate change and human health: present and future risks. Lancet,367, 859–869.Google Scholar
  35. Miao, C., Duan, Q., Sun, Q., Huang, Y., Kong, D., Yang, T., et al. (2014). Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environmental Research Letters,9(5), 055007.Google Scholar
  36. Mishra, V., Mukherjee, S., Kumar, R., & Stone, D. A. (2017). Heat wave exposure in India in current, 1.5 C, and 2.0 C worlds. Environmental Research Letters,12(12), 124012.Google Scholar
  37. Müller, C., Bondeau, A., Popp, A., Waha, K., Fader, M. (2009). Climate change impacts on agricultural yields. Background note for the WDR 2010.Google Scholar
  38. Murphy, A. H. (1988). Skill scores based on the mean square error and their relationship to the correlation coefficient. Monthly Weather Review,116, 2417–2424.Google Scholar
  39. Murphy, E. (1989). Skill scores and correlation coefficients in model verification. Monthly Weather Review,117, 572–582.Google Scholar
  40. Onoz, B., & Bayazit, M. (2012). The power of statistical tests for trend detection. Turkish Journal of Engineering and Environmental Sciences,27(2003), 247–251.Google Scholar
  41. Oza and Kishtawal. (2015). Spatio-temporal changes in temperature over India. Current Science,109(6), 1154.Google Scholar
  42. Pai, D. S., Nair, S. A., & Ramanathan, A. N. (2013). Long term climatology and trends of heat waves over India during the recent 50 years 1961–2010. Mausam,64, 585–604.Google Scholar
  43. Pal, I., & Al-Tabbaa, A. (2010). Long-term changes and variability of monthly extreme temperatures in India. Theoretical and Applied Climatology,100, 45–56.  https://doi.org/10.1007/s00704-009-0167-0.CrossRefGoogle Scholar
  44. Pant, G. B., & Kumar, K. R. (1997). Climates of South Asia. Chichester: Wiley.Google Scholar
  45. Parth Sarthi, P., Ghosh, S., & Kumar, P. (2015). Possible future project of Indian summer monsoon rainfall (ISMR) with evaluation of model performance in Coupled Model Inter-Comparison Project Phase 5 (CMIP5). Global and Planetary Change.  https://doi.org/10.1016/j.gloplacga.2015.03.005.CrossRefGoogle Scholar
  46. Parth Sarthi, P., Kumar, P., & Ghosh, S. (2016). Possible future rainfall over Gangetic Plains (GP), India, in multi-model simulations of CMIP3 and CMIP5. Theoretical and Applied Climatology,124, 691–701.  https://doi.org/10.1007/s00704-015-1447-5.CrossRefGoogle Scholar
  47. Pattnayak C, Kar SC & Kumari PR (2015) Projections of rainfall and surface temperature from CMIP5 models under RCP4. 5 and 8.5 over BIMSTEC countries. In EGU General Assembly Conference Abstracts 17:556.Google Scholar
  48. Patz, J. A., Campbell-Lendrum, D., Holloway, T., & Foley, J. A. (2005). Impact of regional climate change on human health. Nature,438, 310–317.Google Scholar
  49. Perkins, S. E., Pitman, A. J., & Sisson, S. A. (2009). Smaller projected increases in 20-year temperature returns over Australia in skill-selected climate models. Geophysical Research Letters,36, L06710.Google Scholar
  50. Pisudde, P. M., Kumar, P., Sarthi, P. P., & Deshmukh, P. R. (2017). Climatic determinants of Japanese encephalitis in Bihar State of India: A time-series Poisson regression analysis. Journal Communicable Disease,49, 13–18.Google Scholar
  51. Pitman, A. J., & Perkins, S. E. (2009). Global and regional comparison of daily 2- m and 1000-hPa maximum and minimum temperatures in three global reanalyses. Journal of Climate,22, 4667–4681.Google Scholar
  52. Pramanik, S. K., & Jagannathan, P. (1954). Climatic changes in India rainfall. Ind J Meteorol Geophys,4, 291–309.Google Scholar
  53. Rajeevan, M., Bhate, J., Kale, J. D., & Lal, B. (2006). High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Current Science,91(3), 296–306.Google Scholar
  54. Rajeevan, M., & Nanjundiah, R. S. (2009). Coupled model simulations of twentieth century climate of the Indian summer monsoon. In A. Bhattacharyya, S. R. Shetye, & V. K. Gaur (Eds.), Current trends in science (pp. 537–567). Indian Academy of Sciences India: Platinum jubilee special volume.Google Scholar
  55. Raju, K. S., Sonali, P., & Kumar, D. N. (2017). Ranking of CMIP5-based global climate models for India using compromise programming. Theoretical and Applied Climatology,128(3–4), 563–574.Google Scholar
  56. Ratnam, J. V., Behera, S. K., Ratna, S. B., Rajeevan, M., Yamagata, T. (2016). Anatomy of Indian heatwaves Sc.Google Scholar
  57. Reichler, T., & Kim, J. (2008). How well do coupled models simulate today’s climate? Bulletin of the American Meteorological Society,89, 303–311.Google Scholar
  58. Riahi, K., Gruebler, A., & Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change,74, 887–935.Google Scholar
  59. Rohini, P., Rajeevan, M., & Srivastava, A. K. (2016). On the variability and increasing trends of heat waves over India Sci. Rep.,6, 26153.Google Scholar
  60. Rupa Kumar, K., & Krishankumar, Pant G. B. (1994). Diurnal asymmetry of surface temperature trends over India. Geophysical Research Letters,21(8), 677–680.Google Scholar
  61. Rupa Kumar, K., Kumar, K. K., Ashrit, R. G., Patwardhan, S. K., & Pant, G. B. (2002). Climate Change in India: Observations and model projections. In P. R. Shukla, S. K. Sharma, & P. V. Ramana (Eds.), Climate change and India Issues (pp. 24–75). New Delhi: Concerns and Opportunities, Tata McGraw-Hill Publishing Company Limited.Google Scholar
  62. Sanderson, B. M., et al. (2017). Community climate simulations to assess avoided impacts in 1.5 °C and 2 °C futures. Earth System Dynamics,8, 827–847.Google Scholar
  63. Singh, N., & Sontakke, N. A. (2002). On climatic fluctuations and environmental changes of the Indo-Gangetic Plains, India. Climatic Change,52(3), 287–313.Google Scholar
  64. Smith, K. R., Woodward, A., Campbell-Lendrum, D., Chadee, D. D., Honda, Y., & Liu, Q. (2014). Human health: impacts, adaptation, and co-benefits Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press), pp 709–754.Google Scholar
  65. Sonali, P., & Kumar, Nagesh. (2013). Review of trend detection methods and their application to detect temperature changes in India. Journal of Hydrology,476, 212–227.Google Scholar
  66. Sonali, P., Kumar, D. N., & Nanjundiah, R. S. (2016). Intercomparison of CMIP5 and CMIP3 simulations of the 20th century maximum and minimum temperatures over India and detection of climatic trends. Theoretical and applied climatology..  https://doi.org/10.1007/s00704-015-1716-3.CrossRefGoogle Scholar
  67. Sonali, P., Kumar, D. N., & Nanjundiah, R. S. (2017). Intercomparison of CMIP5 and CMIP3 simulations of the 20th century maximum and minimum temperatures over India and detection of climatic trends. Theoretical and applied climatology.  https://doi.org/10.1007/s00704-015-1716-3.CrossRefGoogle Scholar
  68. Sonali, P., & Nagesh Kumar, D. (2016). Detection and attribution of seasonal temperature changes in India with climate models in the CMIP5 archive. Journal of Water and Climate Change,7(1), 83–102.Google Scholar
  69. Sperber, K. R., Annamalai, H., Kang, I. S., Kitoh, A., Moise, A., Turner, A., et al. (2013). The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dynamics.  https://doi.org/10.1007/s00382-012-1607-6.CrossRefGoogle Scholar
  70. Subash, N., Sikka, A. K., & Mohan, H. S. R. (2011). An investigation into observational characteristics of rainfall and temperature in Central Northeast India—A historical perspective 1889–2008. Theor Appl Climatol,103, 305–319.  https://doi.org/10.1007/s00704-010-0299-2.CrossRefGoogle Scholar
  71. Sun, Y., Zhang, X., Zwiers, F. W., Song, L., Wan, H., Hu, T., et al. (2014). Rapid increase in the risk of extreme summer heat in Eastern China. Nat Clim Chang,4, 1082–1085.Google Scholar
  72. Taylor, K. E. (2001). Summarizing multiple aspects of model performance in single diagram. Journal of Geophysical Research,106(D7), 7183–7192.Google Scholar
  73. Tianjun, Z. (2013). Historical evolution of global and regional surface air temperature simulated by FGOALS-s2 and FGOALS-g2: How reliable are the model results? Advances in Atmospheric Sciences,30, 638–657.  https://doi.org/10.1007/s00376-013-2205-1.1.CrossRefGoogle Scholar
  74. Van-Vuuren, D. P., Stehfest, E., Den-Elzen, M. G. J., Deetman, S., Hof, A., Isaac, M., et al. (2011). RCP2.6: Exploring the possibility to keep global mean temperature change below 2 degree C. Climatic Change.  https://doi.org/10.1007/s10584-011-0152-3.CrossRefGoogle Scholar
  75. Wang, W., Zhou, W., & Chen, D. (2014). Summer high temperature extremes in Southeast China: bonding with the El-Niño–Southern oscillation and East Asian summer monsoon coupled system. Journal of Climate,27, 4122–4138.Google Scholar
  76. Watterson, I. G. (1996). Non-dimensional measures of climate model performance. International Journal of Climatology,16, 379–391.Google Scholar
  77. Wei, J., Dirmeyer, P. A., Guo, Z., Zhang, L., & Misra, V. (2010). How much do different land models matter for climate simulation? Part I: climatology and variability. Journal of Climate,23, 3120–3134.  https://doi.org/10.1175/2010JCLI3177.1.CrossRefGoogle Scholar
  78. Xiaolong, C., Tianjun, Z., & Zhun, G. U. O. (2014). Climate sensitivities of two versions of FGOALS model to idealized radiative forcing,57, 1363–1373.  https://doi.org/10.1007/s11430-013-4692-4.CrossRefGoogle Scholar
  79. Yao, Y., Luo, Yong, Huang, J., & Zhao, Z. (2013). Comparison of monthly temperature extremes simulated by CMIP3 and CMIP5 models. Journal of Climate,26, 7692–7707.Google Scholar
  80. Zhao, L., Xu, J., Powell, A. M. (2013). Discrepancies of surface temperature trends in the CMIP5 simulations and observations on the global and regional scales, Clim. Past Discuss., 9:6161–6178.  https://doi.org/10.5194/cpd-9-6161-2013 www.clim-past-discuss.net/9/6161/2013/.Google Scholar
  81. Zhou, T., & Yu, R. (2006). Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. Journal of Climate,19, 5843–5858.  https://doi.org/10.1175/jcli3952.1.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental SciencesCentral University of South BiharGayaIndia

Personalised recommendations