Advertisement

Imaging of Seismogenic Asperities of the 2016 ML 6.0 Amatrice, Central Italy, Earthquake Through Dynamic Rupture Simulations

  • Hideo AochiEmail author
  • Cédric Twardzik
Article

Abstract

Numerical simulations are carried out for the dynamic rupture and wave propagation process of the 24th August 2016 ML 6.0 Amatrice, Italy, earthquake, using a boundary domain method (BDM), a hybrid method of boundary integral equation and finite difference methods. Dynamic rupture parameters of two seismogenic asperities are searched by iterative search through the comparison of the near-field ground motions. The preferred models indicate two asperities, aligned at around 4–5 km depth and separated from each other as well as from the initial rupture point. This requires a few supplementary patches connecting them, and that are less energetic than the asperities. The asperities are characterized by a radius of 2–3 km in the south (first to rupture) and of 2–4 km in the north (second to rupture), and the corresponding fracture energies of the asperities are (25.35 ± 0.63) × 1012 J and (38.05 ± 7.91) × 1012 J, respectively. These values are consistent with the scaling relation extrapolated from various analyses of large earthquakes. Although the parameter space of the search is limited due to the numerical performance of the dynamic rupture simulation, the proposed simple characterization of the earthquakes source confirms the scaling relation in fracture energy of the seismogenic asperities, which is essential for constructing mechanical earthquake source models.

Keywords

2016 Amatrice earthquake dynamic rupture simulation patch model fracture energy scaling law 

Notes

Acknowledgements

We thank INGV for the recorded data and other useful information. We also thank E. Tinti and F. Gallovič for their precision on the kinematic models. Numerical simulations are carried out on French supercomputing center GENCI/CINES under the Grants A0030406700 and A0050406700. C.T. was funded by the Centre National d’Études Spatiales (CNES) as well as by the ANR JCJC E-POST (ANR-14-CE03-0002-01JCJC E-POST). The authors also thanks the editor Luis Dalguer as well as Andre Herrero and an anonymous reviewer for their constructive comments.

References

  1. Aochi, H. (2018). Dynamic asymmetry of normal and reverse faults due to constrained depth-dependent stress accumulation. Geophysical Journal International, 215, 2134–2143.  https://doi.org/10.1093/gji/ggy407.CrossRefGoogle Scholar
  2. Aochi, H., Fukuyama, E., & Matsu’ura, M. (2000). Spontaneous rupture propagation on a non-planar fault in 3D elastic medium. Pure and Applied Geophysics, 157, 2003–2027.  https://doi.org/10.1007/PL00001072.CrossRefGoogle Scholar
  3. Aochi, H., & Madariaga, R. (2003). The 1999 Izmit, Turkey, earthquake: Non-planar fault structure, dynamic rupture process and strong ground motion. Bulletin of the Seismological Society of America, 93, 1249–1266.  https://doi.org/10.1785/0120020167.CrossRefGoogle Scholar
  4. Aochi, H., & Ruiz, S. (2018). Dynamic rupture simulation of the 2015 Mw 8.3 Illapel (Chile) earthquake. AGU Fall meeting, T43E-0439, San Francisco, USA.Google Scholar
  5. Aochi, H., Ulrich, T., Ducellier, A., Dupros, F., & Michea, D. (2013). Finite difference simulations of seismic wave propagation for understanding earthquake physics and predicting ground motions: Advances and challenges. Journal of Physics: Conference Series, 454, 012010.  https://doi.org/10.1088/1742-6596/454/1/012010.Google Scholar
  6. Archuleta, R. J. (1984). A faulting model for the 1979 Imperial Valley earthquake. Journal of Geophysical Research, 89, 4559–4585.CrossRefGoogle Scholar
  7. Bouchon, M., Toksöz, N., Karabulut, H., Bouin, M.-P., Dietrich, M., Akta, M., et al. (2000). Seismic imaging of the 1999 Izmit (Turkey) rupture inferred from the near-fault recordings. Geophysical Research Letters, 27, 3013–3016.CrossRefGoogle Scholar
  8. Cheloni, D., et al. (2017). Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data. Geophysical Research Letters, 44, 6778–6787.  https://doi.org/10.1002/2017GL073580.CrossRefGoogle Scholar
  9. Chiaraluce, L., Di Stefano, R., Tinti, E., Scognamiglio, L., Michele, M., Casarotti, E., et al. (2017). The 2016 Central Italy seismic sequence: A first look at the mainshocks, aftershocks and source models. Seismological Research Letters, 88, 757–771.  https://doi.org/10.1785/0220160221.CrossRefGoogle Scholar
  10. Cirella, A., Pezzo, G., & Piatanesi, A. (2018). Rupture kinematics and structural-rheological control of the 2016 Mw 6.1 Amatrice (Central Italy) earthquake from joint inversion of seismic and geodetic data. Geophysical Research Letters, 45, 12302–12311.  https://doi.org/10.1029/2018GL080894.CrossRefGoogle Scholar
  11. Cocco, M., & Bizzarri, A. (2002). On the slip-weakening behavior of rate- and state dependent constitutive laws. Geophysical Research Letters, 29, 1516.  https://doi.org/10.1029/2001GL013999.CrossRefGoogle Scholar
  12. Di Carli, S., François-Holden, C., Peyrat, S., & Madariaga, R. (2010). Dynamic inversion of the 2000 Tottori earthquake based on elliptical subfault approximations. Journal of Geophysical Research, 115, B12238.  https://doi.org/10.1029/2009JB006358.CrossRefGoogle Scholar
  13. Díaz-Mojica, J., Cruz-Atienza, V., Madariaga, R., Singh, S. K., Tago, J., & Iglesias, A. (2014). Dynamic source inversion of the M6.5 intermediate-depth Zumpango earthquake in central Mexico: A parallel genetic algorithm. Journal of Geophysical Research, 119, 7768–7785.  https://doi.org/10.1002/2013JB010854.Google Scholar
  14. Favreau, P., & Archuleta, R. J. (2003). Direct seismic energy modeling and application to the 1979 Imperial Valley earthquake. Geophysical Research Letters, 30, 1198.  https://doi.org/10.1029/2002GL015968.CrossRefGoogle Scholar
  15. Fukuyama, E., & Madariaga, R. (1995). Integral equation method for plane crack with arbitrary shape in 3D elastic medium. Bulletin of the Seismological Society of America, 85, 614–628.Google Scholar
  16. Gallovic, F., Valentola, L., Ampuero, J. P., & Gabriel, A.-A. (2019). Bayesian dynamic finite fault inversion: Application to the 2016 Mw 6.2 Amatrice, Italy. Earthquake, 5, 10.  https://doi.org/10.31223/osf.io/z9h2u.Google Scholar
  17. Goto, H., Ramirez-Guzman, L., & Bielak, J. (2010). Simulation of spontaneous rupture based on a combined boundary integral equation method and finite element method approach: SH and P-SV cases. Geophysical Journal International, 183, 975–1004.CrossRefGoogle Scholar
  18. Goto, H., Yamamoto, Y., & Kita, S. (2012). Dynamic rupture simulation of the 2011 off the Pacific coast of Tohoku earthquake: Multi-event generation within dozens of seconds. Earth, Planets and Space, 64(12), 1167–1175.CrossRefGoogle Scholar
  19. Guatteri, M., & Spudich, P. (2000). What can strong-motion tell us about slip-weakening fault-friction law? Bulletin of the Seismological Society of America, 90, 98–116.CrossRefGoogle Scholar
  20. Herrera, C., Ruiz, S., Madariaga, R., & Poli, P. (2017). Dynamic inversion of the 2015 Jujuy earthquake and similarity with other intraslab events. Geophysical Journal International, 209, 866–875.  https://doi.org/10.1093/gji/ggx056.CrossRefGoogle Scholar
  21. Ida, Y. (1972). Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. Journal of Geophysical Research, 77, 3796–3805.CrossRefGoogle Scholar
  22. Ide, S., & Aochi, H. (2005). Earthquakes as multiscale dynamic ruptures with heterogeneous fracture surface energy. Journal of Geophysical Research, 110, B11303.  https://doi.org/10.1029/2004JB003591.CrossRefGoogle Scholar
  23. Ide, S., & Aochi, H. (2013). Historical seismicity and dynamic rupture process of the 2011 Tohoku-Oki earthquake. Tectonophys., 600, 1–13.  https://doi.org/10.1016/j.bbr.2011.03.031.CrossRefGoogle Scholar
  24. Irikura, K., & Miyake, H. (2011). Recipe for predicting strong ground motion from crustal earthquake scenario. Pure and Applied Geophysics, 168, 85–104.  https://doi.org/10.1007/s00024-010-0150-9.CrossRefGoogle Scholar
  25. Kamae, K., & Irikura, K. (1998). Rupture process of the 1995 Hyogo-ken Nanbu earthquake and simulation of near-source ground motion. Bulletin of the Seismological Society of America, 88, 400–412.Google Scholar
  26. Kame, N., & Aochi, H. (2009). A hybrid FDM-BIEM approach for earthquake dynamic rupture simulation. In 12th international conference on fracture proceedings, Ottawa, Canada.Google Scholar
  27. Kaneko, Y., Avouac, J. P., & Lapusta, N. (2010). Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nature Geoscience, 3, 363.  https://doi.org/10.1038/ngeo843.CrossRefGoogle Scholar
  28. Kase, Y., & Kuge, K. (2001). Rupture propagation beyond fault discontinuities: Significance of fault strike and location. Geophysical Journal International, 147, 330–342.CrossRefGoogle Scholar
  29. Kikuchi, M., & Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72, 491–506.Google Scholar
  30. Ma, S., & Archuleta, R. J. (2006). Radiated seismic energy based on dynamic rupture models of faulting. Journal of Geophysical Research, 111, B05315.  https://doi.org/10.1029/2005JB004055.CrossRefGoogle Scholar
  31. Ma, S., Custódio, S., Archuleta, R. J., & Liu, P. (2008). Dynamic modeling of the 2004 Mw 6.0 Parfield, California, earthquake. Journal of Geophysical Research, 113, L04302.  https://doi.org/10.1029/2007jb005216.Google Scholar
  32. Mai, P. M., Somerville, P., Pitarka, A., Dalguer, L., Song, S., Beroza, G., Miyake, H., & Irikura, K. (2006). Fracture-energy scaling in dynamic rupture models of past earthquakes. In A. McGarr, R. Abercrombie, & H. Kanamori (Eds.), Earthquakes: Radiated energy and the physics of faulting, Geophysical monograph series (Vol. 170, pp. 283–294).Google Scholar
  33. Mikumo, T., & Fukuyama, E. (2006). Near-source released energy in relation to fracture energy on earthquake faults. Bulletin of the Seismological Society of America, 96, 1177–1181.  https://doi.org/10.1785/0120050121.CrossRefGoogle Scholar
  34. Mirwald, A., Cruz-Atienza, V., Díaz-Mojica, J., Iglesias, A., Singh, S. K., Villafuerte, C., et al. (2019). The 19 September 2017 (Mw 7.1) intermediate-depth Mexican earthquake: A slow and energetically inefficient deadly shock. Geophysical Research Letters, 46, 2054–2064.  https://doi.org/10.1029/2018GL080904.CrossRefGoogle Scholar
  35. Nielsen, S., & Olsen, K. B. (2000). Constraints on stress and friction from dynamic rupture models of the 1994 Northridge, California, earthquake. Pure and Applied Geophysics, 157, 2029–2046.  https://doi.org/10.1007/PL00001073.CrossRefGoogle Scholar
  36. Nielsen, S., Spagnuolo, E., Violey, M., Smith, S., Di Toro, G., & Bistacchi, A. (2016). G: Fracture energy, friction and dissipation in earthquakes. Journal of Seismology, 20, 1187–1205.  https://doi.org/10.1007/s10950-016-9560-1.CrossRefGoogle Scholar
  37. Oglesby, D. D. (2005). The dynamics of strike-slip step-overs with linking dip-slip faults. Bulletin of the Seismological Society of America, 95, 1604–1622.  https://doi.org/10.1785/0120050058.CrossRefGoogle Scholar
  38. Peyrat, S., Madariaga, R., Buforn, E., Campos, J., Asch, G., & Vilotte, J. P. (2010). Kinematic rupture process of the 2007 Tocopilla earthquake and its main aftershocks from teleseismic and strong-motion data. Geophysical Journal International, 182, 1411–1430.CrossRefGoogle Scholar
  39. Peyrat, S., & Olsen, K. B. (2004). Nonlinear dynamic rupture inversion of the 2000 western Tottori, Japan, earthquake. Geophysical Research Letters, 31, L05604.CrossRefGoogle Scholar
  40. Peyrat, S., Olsen, K. B., & Madariaga, R. (2001). Dynamic modeling of the 1992 Landers earthquake. Journal of Geophysical Research, 106, 26467–26482.  https://doi.org/10.1029/2001JB000205.CrossRefGoogle Scholar
  41. Pizzi, A., Di Domenica, A., Gallovič, F., Luzi, L., & Puglia, R. (2017). Fault segmentation as constraint to the occurrence of the main shocks of the 2016 Central Italy seismic sequence. Tectonics, 36, 2370–2387.  https://doi.org/10.1002/2017tc004652.CrossRefGoogle Scholar
  42. Ruiz, S., Aden-Antoniow, F., Baez, J. C., Otarola, C., Potin, B., del Campo, F., et al. (2017a). Nucleation phase and dynamic inversion of the Mw 6.9 Valparaiso 2017 earthquake in Central Chile. Geophysical Research Letters, 44, 10–290.  https://doi.org/10.1002/2017gl075675.Google Scholar
  43. Ruiz, S., Aden-Antoniow, F., Baez, J. C., Otarola, C., Potin, B., del Campo, F., et al. (2017b). Nucleation phase and dynamic inversion of the Mw 6.9 Valparaíso 2017 earthquake in central Chile. Geophysical Research Letters, 44, 10290–10297.  https://doi.org/10.1002/2017gl075675.CrossRefGoogle Scholar
  44. Ruiz, J. A., Baumont, D., Bernard, P., & Berge-Thierry, C. (2011). Modelling directivity of strong ground motion with a fractal, k − 2 kinematic source model. Geophysical Journal International, 186, 226–244.  https://doi.org/10.1111/j.1365-246X.2011.05000.x.CrossRefGoogle Scholar
  45. Ruiz, S., & Madariaga, R. (2011). Determination of the friction law parameters of the Mw 6.7 Michilla earthquake in northern Chile by dynamic inversion. Geophysical Research Letters, 38, L09317.  https://doi.org/10.1029/2011gl047147.CrossRefGoogle Scholar
  46. Ruiz, S., & Madariaga, R. (2013). Kinematic and dynamic inversion of the 2008 Northern Iwate earthquake. Bulletin of the Seismological Society of America, 103, 694–708.  https://doi.org/10.1785/0120120056.CrossRefGoogle Scholar
  47. Thatcher, W. (1990). Order and diversity in the modes of circum-pacific earthquake recurrence. Journal of Geophysical Research, 95, 2609–2623.  https://doi.org/10.1029/JB095iB03p02609.CrossRefGoogle Scholar
  48. Tinti, E., Scognamiglio, L., Michelini, A., & Cocco, M. (2016). Slip heterogeneity and directivity of the ML 6.0, 2016, Amatrice earthquake estimated with rapid finite-fault inversion. Geophysical Research Letters, 43, 10745–10752.  https://doi.org/10.1002/2016GL071263.CrossRefGoogle Scholar
  49. Twardzik, C., Das, S., & Madariaga, R. (2014). Inversion of the physical parameters that control the source dynamics of the 2004 Parkfield earthquake. Journal of Geophysical Research: Solid Earth, 119, 7010–7027.  https://doi.org/10.1002/2014jb011238.Google Scholar
  50. Twardzik, C., Madariaga, R., Das, S., & Custódio, S. (2012). Robust features of the source process for the 2004 Parkfield, California, earthquake from strong-motion seismograms. Geophysical Journal International, 191, 1245–1254.  https://doi.org/10.1111/j.1365-246X.2012.05653.x.Google Scholar
  51. Ulrich, T., & Aochi, H. (2015). Rapidness and robustness of finite source inversion from elliptical patches method using continuous GPS and acceleration data: 2011 Mw 9.0 Tohoku earthquake. Pageoph, 172, 3439–3453.  https://doi.org/10.1007/s00024-014-0857-0.CrossRefGoogle Scholar
  52. Vallée, M., & Bouchon, M. (2004). Imaging coseismic rupture in far field by slip patches. Geophysical Journal International, 156, 615–630.  https://doi.org/10.1111/j.1365-246X.2004.02158.x.CrossRefGoogle Scholar
  53. Viesca, R. C., & Garagash, D. I. (2015). Ubiquitous weakening of faults due to thermal pressurization. Nature Geoscience, 8, 875–879.  https://doi.org/10.1038/ngeo2554.CrossRefGoogle Scholar
  54. Walters, R. J., Gregory, L. C., Wedmore, L. N. J., Craig, T. J., McCaffrey, K., Wilkinson, M., et al. (2018). Dual control of fault intersections on stop-start rupture in the 2016 Central Italy seismic sequence. Earth and Planetary Science Letters, 500, 1–14.  https://doi.org/10.1016/j.epsl.2018.07.043.CrossRefGoogle Scholar
  55. Weng, H., & Yang, H. (2018). Constraining frictional properties on fault by dynamic rupture simulations and near-field observations. Journal of Geophysical Research, 123, 6658–6670.  https://doi.org/10.1029/2017JB015414.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire de Géologie, Ecole Normale Supérieure/CNRS, UMR 8538PSL Research UniversityParis Cedex 05France
  2. 2.Risks and Prevention DirectionBRGMOrléans Cedex 2France
  3. 3.Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, IRD, Géoazur, UMR 7329ValbonneFrance
  4. 4.Institut de Physique du Globe de Strasbourg, UMR 7516Université de Strasbourg, EOST/CNRSStrasbourg CedexFrance

Personalised recommendations