Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 11, pp 4955–4968 | Cite as

Geophysical and Metalogenetic Modelling of the Copper Occurrence in Camaquã Sedimentary Basin, Brazilian Southern

  • Ariane Raissa Pinheiro Cortês
  • César Augusto MoreiraEmail author
  • Renata Augusta Sampaio Paes
  • Dimitri Ilich Kerbauy Veloso
Article
  • 63 Downloads

Abstract

The geophysics application is indicated procedure in mineral exploration activities, by the quickness and possible global reduction of project cost. This work presents the results of the DC resistivity and induced polarization methods joint application, integrated to geological and structural data from a potentially mineralized area with copper sulfides, located in the Northern border of the Camaquã Sedimentary Basin, Brazil Southern. The mineral occurrence is characterized by malachite and azurite impregnation on silicified Neoproterozoic metarenite outcrop of Passo da Promessa Formation (Marica Group). The geophysics acquisition consists in six electrical tomography lines in Schlumberger arrangement with 440 m each, the lines were separated on two groups disposed at orthogonal form where the center area is located the mineral occurrence in surface. The results indicate a low resistivity and high chargeability zone 60 m deep, related to a sulfided zone and surrounded by elevated resistivity, which point silicification areas. The structural analysis has revealed two main fracture systems in the crystalline basement (NE–SW and NW–SE), one in the metarenite (NE-SW) and fold with a N20 axis. The 3D visualization model reveals that the mineralization is oriented in the N125 direction (NW–SE). The NW–SE fracture family is secondary but is present in the occurrence area and coincident with the relaxing direction of the folding event. This context corroborates with the hypothesis of filling NW–SE fractures, result which indicates the relevance of this preferential direction in future mineral research campaigns in the Camaquã Basin.

Keywords

Mineral exploration copper DC resistivity induced polarization 3D modelling 

Notes

Acknowledgements

The authors are thankful to National Council for Scientific and Technological Development (CNPq), for the financial support whereby process number 470821/2013-2 (Edital Universal-2013).

References

  1. ABEM. (2012). Terrameter LS—Instruction manual. Sundbyberg: ABEM Instrument.Google Scholar
  2. Aizebeokhai, A. P., Olayinka, A. I., Singh, V. S., & Uhuegbu, C. C. (2011). Effectiveness of 3D geoelectrical resistivity imaging using parallel 2D profiles. International Journal of the Physical Sciences,6, 5623–5647.Google Scholar
  3. Allis, R. G. (1990). Geophysical anomalies over epithermal systems. Journal of Geochemical Exploration,36, 339–374.CrossRefGoogle Scholar
  4. Almeida, R. P. (2005). Tectônica e sedimentação do Ediacarano ao Ordoviciano: Exemplos do Supergrupo Camaquã (RS) e do grupo Cacupé (Paraguai Oriental). PhD thesis, Universidade de São Paulo.Google Scholar
  5. Almeida, R. P., Janikian, L., Fragoso-Cesar, A. R. S., & Marconato, A. (2009). Evolution of a rift basin dominated by subaerial deposits: The Guaritas Rift, Early Cambrian, Southern Brazil. Sedimentary Geology,217, 30–51.CrossRefGoogle Scholar
  6. Biondi, J. C. (2003). Processos metalogenéticos e os depósitos minerais brasileiros. São Paulo: Oficina de Textos.Google Scholar
  7. Bocchi, P. R. (1970). Geologia da Folha de Caçapava do Sul, Rio Grande do Sul (p. 245). Bulletin DNPM: Rio de Janeiro.Google Scholar
  8. Borba, A. W. (2006). Evolução geológica da "Bacia do Camaquã" (Neoproterozóico e Paleozóico Inferior do Escudo Sul-rio-grandense, RS, Brasil): uma visão com base na integração de ferramentas de estratigrafia, petrografia e geologia isotópica. Universidade Federal do Rio Grande do Sul: PhD Thesis.Google Scholar
  9. Chambers, J. E., Kuras, O., Meldrum, P. I., Ogilvy, R. D., & Hollands, J. (2006). Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics,71, 231–239.CrossRefGoogle Scholar
  10. Dahlin, T., & Zhou, B. (2004). A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting,52, 379–398.CrossRefGoogle Scholar
  11. DeGroot-Hedlin, C., & Constable, S. (1990). Occam’s inversion to generate smooth, two-dimensional models form magnetotelluric data. Geophysics,55, 1613–1624.CrossRefGoogle Scholar
  12. Dentith, M., & Mudge, S. T. (2014). Geophysics for the mineral exploration geoscientist (pp. 1–438). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Evans, A. M. (1993). Ore geology and industrial minerals. Oxford: Blackwell Scientific.Google Scholar
  14. Ford, K., Keating, P., & Thomas, M. D. (2007). Overview of geophysical signatures associated with Canadian ore deposits. In: W. D. Goodfellow (Ed.), Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods (pp. 939–970). St. John’s: Geological Association of Canada, Mineral Deposits Division.Google Scholar
  15. Geotomo Software. (2003). RES2DINV, version 3.53, Rapid 2D resistivity and IP inversion using the least-square method-geoelectrical imaging 2-D and 3D, Malaysia.Google Scholar
  16. Harres, M. M. (2000). Minas do Camaquã (Caçapava do Sul, RS): A exploração do cobre no Rio Grande do Sul. In L. H. Ronchi & A. O. C. Lobato (Eds.), Minas do Camaquã: um estudo multidisciplinar (pp. 21–53). São Leopoldo: Editora Unisinos.Google Scholar
  17. Irvine, R. J., & Smith, M. J. (1990). Geophysical exploration for epithermal gold deposits. Journal of Geochemical Exploration,36, 375–412.CrossRefGoogle Scholar
  18. Kazmierczak, T. S. (2006). Mapeamento da bacia do Camaquã com a utilização de dados geofísicos, geologia e sensoriamento remoto. MSc dissertation, Universidade Federal do Rio Grande do Sul.Google Scholar
  19. Keller, G. V., & Frishknecht, F. (1970). Electrical methods in geophysical prospecting. New York: Pergamon Press.Google Scholar
  20. Koppe, J. C. (1990). Metalogênese do ouro da Mina da Bossoroca, São Sepé, RS. PhD thesis, Universidade Federal do Rio Grande do Sul.Google Scholar
  21. Kühn, C., Brasse, H., & Schwarz, G. (2017). Three-dimensional electrical resistivity image of the volcanic arc in Northern Chile—An appraisal of early magnetotelluric data. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-017-1764-y.CrossRefGoogle Scholar
  22. Laux, J. H., & Lindenmayer, Z. G. (2000). As Minas do Camaquã: um século de evolução de hipóteses genéticas. In L. H. Ronchi & A. O. C. Lobato (Eds.), Minas do Camaquã: um estudo multidisciplinar (pp. 133–164). São Leopoldo: Editora Unisinos.Google Scholar
  23. Laux, J. H., Lindenmayer, Z. G., Teixeira, J. B., & Bastos Neto, A. (2005). Ore genesis at the Camaquã copper mine, a neoproterozoic sediment-hosted deposit in Southern Brazil. Ore Geology Reviews,26, 71–89.CrossRefGoogle Scholar
  24. Locke, C. A., Johnson, S. A., Cassidy, J., & Mauk, J. L. (1999). Geophysical exploration of the Puhipuhi epithermal area, Northland, New Zealand. Journal of Geochemical Exploration,65, 91–109.CrossRefGoogle Scholar
  25. Loke, M. H., & Baker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by quasi-Newton method. Geophysical Prospecting,44, 131–152.CrossRefGoogle Scholar
  26. Lu, D. B., Wang, F., & Chen, X. D. (2017). An improved ERT approach for the investigation of subsurface structures. Pure and Applied Geophysics,174, 375.  https://doi.org/10.1007/s00024-016-1386-9.CrossRefGoogle Scholar
  27. Marjoribanks, R. (2010). Geological methods in mineral exploration and mining. Heidelberg: Springer.CrossRefGoogle Scholar
  28. McVey, H. (1989). Industrial minerals—Can we live without them? Industrial Minerals,259, 74–75.Google Scholar
  29. Misra, K. C. (2000). Understanding mineral deposits. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  30. Moon, C. J., Whateley, M. E. G., & Evans, A. M. (2006). Introduction to mineral exploration. Oxford: Backwell Publishing.Google Scholar
  31. Moreira, C. A., Borges, M. R., Vieira, G. L., Malagutti Filho, W., & Fernandes, M. M. A. (2014). Geological and geophysical data integration for delimitation of mineralized areas in a supergene manganese deposits. Geofísica Internacional,53, 199–210.CrossRefGoogle Scholar
  32. Moreira, C. A., Helene, L. P. I., Nogara, P., & Ilha, L. M. (2018). Analysis of leaks from geomembrane in a sanitary landfill through models of electrical resistivity tomography in South Brazil. Environmental Earth Sciences,77, 7.  https://doi.org/10.1007/s12665-017-7180-x.CrossRefGoogle Scholar
  33. Moreira, C. A., Lapola, M. M., & Carrara, A. (2016). Comparative analyzes among electrical resistivity tomography arrays in the characterization of flow structure in free aquifer. Geofísica Internacional,55, 119–129.Google Scholar
  34. Mussett, A. E., & Khan, M. A. (2000). Looking into the Earth: An introduction to geological geophysics. New York: Cambridge University Press.CrossRefGoogle Scholar
  35. Paim, P., Chemale, J. R. F., & Lopes, R. C. (2000). A Bacia do Camaquã. In M. Holz & L. F. De Ros (Eds.), Geologia do Rio Grande do Sul (pp. 231–274). Porto Alegre: Universidade Federal do Rio Grande do Sul.Google Scholar
  36. Pirajno, F. (1992). Hydrothermal mineral deposits: Principles and fundamental concepts for the exploration geologist. Berlin: Springer.CrossRefGoogle Scholar
  37. Pirajno, F. (2009). Hydrothermal processes and mineral systems. East Perth: Springer.CrossRefGoogle Scholar
  38. Remus, M. V. D., Mcnaughton, N. J., Hartmann, L. A., Koppe, J. C., Fletcher, I. R., Groves, D. I., et al. (1999). Gold in the Proterozoic juvenile Bossoroca Volcanic Arc of southernmost Brazil: Isotopic constraints on timing and sources. Journal of South American Earth Sciences,12, 349–366.CrossRefGoogle Scholar
  39. Richards, J. (2009). Mining, society, and a sustainable world. Heidelberg: Springer.Google Scholar
  40. Roob, L. (2005). Introduction to ore-forming processes. Oxford: Blackwell.Google Scholar
  41. Teixeira, A. L., Gaucher, C., Paim, P. S. G., Fonseca, M. M., Parente, C. V. P., Silva Filho, W. F. S., et al. (2004). Bacias do estágio de transição da plataforma sul-americana. In V. M. Neto, A. Bartorelli, C. D. Carneiro, & B. B. B. Brito-Neves (Eds.), Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida (pp. 487–536). São Paulo: Editora Beca.Google Scholar
  42. Telford, W. M. W., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics. London: Cambridge University Press.CrossRefGoogle Scholar
  43. Vieira, L. B., Moreira, C. A., Côrtes, A. R. P., & Luvizotto, G. L. (2016). Geophysical modeling of the manganese deposit for Induced Polarization method in Itapira (Brazil). Geofísica Internacional,55(2), 107–117.Google Scholar
  44. Ward, S. H. (1990). Resistivity and induced polarization methods. Geotechnical and Environmental Geophysics,1(5), 147–198.CrossRefGoogle Scholar
  45. Zhang, G., Lü, Q. T., Zhang, G. B., Lin, P. R., Jia, Z. Y., & Suo, K. (2017). Joint interpretation of geological, magnetic, AMT, and ERT data for mineral exploration in the Northeast of Inner Mongolia, China. Pure and Applied Geophysics,1, 1.  https://doi.org/10.1007/s00024-017-1733-5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Geosciences and Exact Sciences Institute (IGCE)Univ. Estadual Paulista (UNESP)Rio ClaroBrazil

Personalised recommendations