Advertisement

Ray Tracing Directly in a 3-D Ellipsoidal Earth Model for Multiphase Global Arrivals

  • Xing-Wang Li
  • Chao-Ying BaiEmail author
  • Stewart Greenhalgh
Article
  • 27 Downloads

Abstract

Seismic ray-tracing methods are widely used in seismology, with most such algorithms being executed in Cartesian or spherical coordinate systems. However, the actual Earth is not a perfect sphere but rather an ellipsoid, meaning that results calculated in spherical coordinates may be different from the actual situation. The general approach is to first calculate traveltimes in a spherical Earth model, then apply ellipsoidal time corrections to obtain more accurate traveltime data. Alternatively, one may directly conduct the ray tracing in the ellipsoidal Earth model without any time corrections. In this paper, we extend the functional of the multistage irregular shortest-path method, previously formulated for a spherical Earth model, to an ellipsoidal Earth model in order to trace multiphase global seismic arrivals. The results of two models indicate that the proposed algorithm has high computational accuracy, which can be further tuned by decreasing the secondary node spacing. Comparison tests indicate that the traveltime differences between the ellipsoidal and spherical coordinate ray-tracing methods cannot be ignored for direct P and S arrivals, reflected PcP and ScS arrivals, and reflected and converted PcS and ScP arrivals. The traveltime differences (TE − TS) computed by the ellipsoidal and spherical ray-tracing methods have different distribution patterns, being dependent on the source locations. However, in general, these traveltime differences (TE − TS) have relatively large negative values near the polar region and positive values near the equatorial region, except for sources located near the polar region. For ellipsoidal time correction in a specific case, the maximum differences between the traveltimes computed by the ellipsoidal coordinate ray-tracing method and the AK135 Traveltime Table after application of ellipsoidal time corrections are less than 0.1 s. Meanwhile, the maximum differences between the traveltimes predicted by the ellipsoidal coordinate ray-tracing method and by the spherical coordinate ray-tracing method after application of ellipsoidal time corrections are only 0.075 s for the six stated phases. These results indicating that ray tracing could be conducted directly in the ellipsoidal Earth model.

Keywords

Ellipsoidal coordinates shortest-path method multistage computational technique multiple-phase ray tracing 

Notes

Acknowledgements

This research was funded by the Fundamental Research Funds for the Central Universities, Chang’an University (300102269109).

References

  1. Bai, C. Y., Li, X. L., & Tang, X. P. (2011). Seismic wavefront evolution of multiply reflected, transmitted and converted phases in 2D/3D triangular cell model. Journal of Seismology, 15, 637–652.CrossRefGoogle Scholar
  2. Bijwaard, H., & Spakman, W. (1999). Fast kinematic ray tracing of first and later-arriving global seismic phases. Geophysical Journal International, 139, 359–369.CrossRefGoogle Scholar
  3. Bijwaard, H., & Spakman, W. (2000). Non-linear global P-wave tomography by iterated linearized inversion. Geophysical Journal International, 141, 71–82.CrossRefGoogle Scholar
  4. Bullen, K. E. (1937). The ellipticity correction to travel-times of p and s earthquake waves. Geophysical Journal International, 4, 143–157.CrossRefGoogle Scholar
  5. Cores, D., & Loreto, M. (2007). A generalized two point ellipsoidal anisotropic ray tracing for converted waves. Optimization and Engineering, 8, 373–396.CrossRefGoogle Scholar
  6. De Kool, M., Rawlinson, N., & Sambridge, M. (2006). A practical grid-based method for tracking multiple refraction and reflection phases in three-dimensional heterogeneous media. Geophysical Journal International, 167, 253–270.CrossRefGoogle Scholar
  7. Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.CrossRefGoogle Scholar
  8. Dziewonski, A. M., & Gilbert, F. (1976). The effect of small, aspherical perturbations on travel times and a re-examination of the corrections for ellipticity. Geophysical Journal of the Royal Astronomical Society, 44, 7–17.CrossRefGoogle Scholar
  9. Gorbatov, A., & Kennett, B. L. N. (2003). Joint bulk-sound and shear tomography for Western Pacific subduction zones. Earth and Planetary Science Letters, 210(3–4), 543.Google Scholar
  10. Guéguen, J. F., Hoangtrong, P., & Legros, H. (1987). Seismic rays in an ellipsoidal earth model: Theoretical analysis and estimation of deviations due to the ellipticity. Geophysical Journal of the Royal Astronomical Society, 89, 839–855.CrossRefGoogle Scholar
  11. Huang, G. J., Bai, C. Y., & Greenhalgh, S. (2013). Fast and accurate global multiphase arrival tracking: The irregular shortest-path method in a 3-D spherical earth model. Geophysical Journal International, 194, 1878–1892.CrossRefGoogle Scholar
  12. Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 122, 429–465.CrossRefGoogle Scholar
  13. Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the earth from traveltimes. Geophysical Journal International, 122, 108–124.CrossRefGoogle Scholar
  14. Kennett, B. L. N., & Gudmundsson, O. (1996). Ellipticity corrections for seismic phases. Geophysical Journal International, 122(1), 108–124.CrossRefGoogle Scholar
  15. Keyser, J. R., Ritter, R., & Jordan, M. (2002). 3D shear-wave velocity structure of the Eifel plume, Germany. Earth and Planetary Science Letters, 203, 59–82.CrossRefGoogle Scholar
  16. Klimeš, L., & Kvasnička, M. (1994). 3-D network ray tracing. Geophysical Journal International, 116, 726–738.CrossRefGoogle Scholar
  17. Koketsu, K., & Sekine, S. (1998). Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with discontinuities. Geophysical Journal International, 132, 339–346.CrossRefGoogle Scholar
  18. Moser, T. J. (1991). Shortest path calculation of seismic rays. Geophysics, 56, 59–67.CrossRefGoogle Scholar
  19. Simmons, N. A., Forte, A. M., Boschi, L., et al. (2010). GyPSuM: A joint tomographic model of mantle density and seismic wave speeds. Journal of Geophysical Research, 115(B12), B12310.CrossRefGoogle Scholar
  20. Simmons, N. A., Myers, S. C., Johannesson, G., & Matzel, E. (2012). LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. Journal of Geophysical Research, 117, B10302.CrossRefGoogle Scholar
  21. Steck, L. K., Thurber, C. H., Fehler, M. C., Lutter, W. J., Roberts, P. M., Baldridge, W. S., et al. (1998). Crust and upper mantle P wave velocity structure beneath Valles caldera, New Mexico: Results from the Jemez teleseismic tomography experiment. Journal of Geophysical Research, 103, 24301–24320.CrossRefGoogle Scholar
  22. Su, W. J., Woodward, R. L., & Dziewonski, A. M. (1994). Degree-12 model of shear velocity heterogeneity in the mantle. Journal of Geophysical Research, 99, 6945–6980.CrossRefGoogle Scholar
  23. van der Hilst, R. D., Widiyantoro, S., & Engdahl, E. R. (1997). Evidence for deep mantle circulation from global tomography. Nature, 386, 578–584.CrossRefGoogle Scholar
  24. Vidale, J. E. (1988). Finite-difference calculation of travel times. Bulletin of the Seismological Society of America, 78, 2062–2076.Google Scholar
  25. Vidale, J. E. (1990). Finite-difference calculation of travel time in three dimensions. Geophysics, 55, 521–526.CrossRefGoogle Scholar
  26. Widiyantoro, S., Gorbatov, A., Kennett, B. L. N., & Fukao, Y. (2000). Improving global shear-wave delay-time tomography using three-dimensional ray tracing and iterative inversion. Geophysical Journal International, 141, 747–758.CrossRefGoogle Scholar
  27. Zhao, D. (2001). Seismic structure and origin of hotspots and mantle plumes. Earth and Planetary Science Letters, 192, 251–265.CrossRefGoogle Scholar
  28. Zhao, D., Hasegawa, A., & Horiuchi, S. (1992). Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. Journal of Geophysical Research, 97, 19909–19928.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xing-Wang Li
    • 1
  • Chao-Ying Bai
    • 1
    • 2
    Email author
  • Stewart Greenhalgh
    • 3
  1. 1.School of Geology Engineering and GeomaticsChang’an UniversityXi’anChina
  2. 2.Institute of Computational GeophysicsChang’an UniversityXi’anChina
  3. 3.Department of GeosciencesKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations