Advertisement

Field Survey of the 2018 Sulawesi Tsunami Deposits

  • Purna Sulastya PutraEmail author
  • Aswan Aswan
  • Khoiril Anwar Maryunani
  • Eko Yulianto
  • Widjo Kongko
Article
Part of the following topical collections:
  1. Sulawesi/Palu-2018 and Anak/Krakatau-2018

Abstract

On 28 September 2018, a Mw 7.5 earthquake struck Sulawesi Island, soon followed by a destructive tsunami. This study provides a case history of tsunami deposition where submarine landslides or coastal collapses have contributed to and intensified tsunami generation. The sedimentary features resulting from this complex tsunami mechanism are not yet well understood. We surveyed tsunami deposits at six locations along the coastline of Palu Bay, in addition to measuring tsunami flow depth, run-up height, and inundation distance at each site. In general, the tsunami height was less than 8 m with a maximum inundation distance of 310 m. The tsunami deposits are thin with simple sedimentary structures such as fining upward sequences. These sedimentary characteristics are typical of tsunami deposits elsewhere around the world. This work is a preliminary study, in that numerical modeling including sediment transport has not been performed. Further work is needed to distinguish tsunamis with different source mechanisms.

Keywords

Tsunami generated from landslide tsunami deposit field survey Palu—Sulawesi 2018 

Notes

Acknowledgements

The authors would like to express their gratitude to the Coordinating Ministry for Marine Affairs of the Republic of Indonesia (Kemenkomar RI) for funding the field survey. The field survey was part of Operasi Bakti Teknologi 2018. Dr. Udrekh, the field survey coordinator, is thanked for his full support. Yudhicara (VSI), Prihartanto and Budi (BPPT), Bayu, Gilang, Rahmad, and Rizky (Geological Engineering, Tadulako University) are thanked for help during the field survey. Jonathan Griffin (Geoscience Australia) is thanked for commenting and proofreading of this manuscript.

References

  1. Bao, H., Ampuero, J.-P., Meng, L., Fielding, E. J., Liang, C., Milliner, C. W. D., et al. (2019). Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nature Geoscience.  https://doi.org/10.1038/s41561-018-0297-z.Google Scholar
  2. Bondevik, S., Svendsen, J., & Angerud, J. (1997). Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway. Sedimentology, 44, 1115–1131.CrossRefGoogle Scholar
  3. Bourgeois, J. (2009). Geologic effects and records of tsunamis. In E. N. Bernard & A. R. Robinson (Eds.), The Sea (Vol. 15, pp. 55–91). Cambridge: Harvard University Press, Tsunamis.Google Scholar
  4. Fernandez-Nieto, E. D., Bouchut, F., Bresch, D., Castro Diaz, M. J., & Mangeney, A. (2008). A new Savage–Hutter type model for submarine avalanches and generated tsunami. Journal of Computational Physics, 227, 7720–7754.CrossRefGoogle Scholar
  5. Geist, E. L. (2012). Phenomenology of tsunamis II: Scaling, event statistics, and inter-event triggering. Advances in Geophysics, 53, 35–93.CrossRefGoogle Scholar
  6. Gelfenbaum, G., & Jaffe, B. (2003). Erosion and sedimentation from the 17 July, 1998 Papua New Guinea tsunami. Pure and Applied Geophysics, 160, 1969–1999.CrossRefGoogle Scholar
  7. Heidarzadeh, M., Muhari, A., & Wijanarto, A. B. (2018). Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulation. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-2065-9.Google Scholar
  8. Kulikov, E. A., Rabinovich, A., Thomson, R. E., & Bornhold, B. D. (1996). The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska. Journal of Geophysical Research, 101(C3), 6609–6615.CrossRefGoogle Scholar
  9. Moore, A., McAdoo, B. G., & Ruffman, A. (2007). Landward fining from multiple source in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland. Sedimentary Geology, 200(3–4), 336–346.CrossRefGoogle Scholar
  10. Muhari, A., Imamura, F., Arikawa, T., Hakim, A., & Afriyanto, B. (2018). Solving the puzzle of the September 2018 Palu, Indonesia, tsunami mystery: clues from the tsunami waveform and the initial field survey data. Journal of Disaster Research, 13, sc20181108.CrossRefGoogle Scholar
  11. Nakamura, Y., Nishimura, Y., & Putra, P. S. (2012). Local variation of inundation, sedimentary characteristics, and mineral assemblages of the 2011 Tohoku-Oki tsunami on the Misawa coast, Aomori, Japan. Sedimentary Geology, 282, 216–227.CrossRefGoogle Scholar
  12. Omira, R., Dogan, G. G., Hidayat, R., Husrin, S., Prasetya, G., Annunziato, A., et al. (2019). The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: a post-event survey. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-019-02145-z.Google Scholar
  13. Pantosti, D., Barbano, M. S., Smedile, A., De Martini, P. M., & Tigano, G. (2008). Geological evidence of paleotsunami at Torre degli Inglesi (northeast Sicily). Geophysical Research Letters, 35(5), L05311.  https://doi.org/10.1029/2007GL032935.CrossRefGoogle Scholar
  14. Paris, R., Wassmer, P., Sartohadi, J., Lavigne, F., Barthomeuf, B., Desgages, E., et al. (2009). Tsunamis as geomorphic crises: lessons from the December 26, 2004 tsunami in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Geomorphology, 104, 59–72.CrossRefGoogle Scholar
  15. Putra, P. S., Nishimura, Y., Nakamura, Y., & Yulianto, E. (2013). Source and transportation modes of the 2011 Tohoku-Oki tsunami deposits on the central east Japan coast. Sedimentary Geology, 294, 282–293.CrossRefGoogle Scholar
  16. Romundset, A., & Bondevik, S. (2011). Propagation of the Storegga tsunami into ice-free lakes along the southern shores of the Barents Sea. Journal of Quaternary Science, 26(5), 457–462.CrossRefGoogle Scholar
  17. Sidarto, S., & Kusdji, D. K. (2010). Peta Geologi Lembar Palu. Bandung: Sulawesi Tengah Hasil Interpretasi Citra Inderaan Jauh. Pusat Survey Geologi.Google Scholar
  18. Socquet, A., Hollingsworth, J., Pathier, E., & Bouchon, M. (2019). Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nature Geoscience.  https://doi.org/10.1038/s41561-018-0296-0.Google Scholar
  19. Tappin, D. R., Matsumoto, T., Watts, P., Satake, K., McMurtry, G. M., Matsuyama, M., et al. (1999). Sediment slump likely caused 1998 Papua New Guinea tsunami. EOS Transactions, American Geophysical Union, 80(30), 329–340.CrossRefGoogle Scholar
  20. Ward, S. N. (2001). Landslide tsunami. Journal of Geophysical Research, 106(6), 11201–11215.CrossRefGoogle Scholar
  21. Watts, P. (2000). Tsunami features of solid block underwater landslides. Journal of Waterway, Port, Coastal and Ocean Engineering, 126(3), 144–152.CrossRefGoogle Scholar
  22. Watts, P. (2003). Probabilistic analyses of landslide tsunami hazards. Submarine mass movement and their consequences. In J. Locat & J. Mienert (Eds.), Advances in natural and technological hazards research (pp. 163–170). Berlin: Springer.Google Scholar
  23. Yalciner, A., Hidayat, R. S., Husrin, S., Annunziato, A., Dogan, G. G., Zaytsev, A., et al. (2018). Field survey on the coastal impact of the September 28, 2018 Palu, Indonesia tsunami. San Francisco: AGU Fall Meeting.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Center for GeotechnologyIndonesian Institute of SciencesBandungIndonesia
  2. 2.Department of Geological Engineering, Faculty of Earth Science and TechnologyInstitut Teknologi BandungBandungIndonesia
  3. 3.Agency for the Assessment and Application of Technology (BPPT)YogyakartaIndonesia

Personalised recommendations