Advertisement

S-Wave Velocity Images of the Crust in the Southeast Margin of Tibet Revealed by Receiver Functions

  • Hengchu Peng
  • Jiafu HuEmail author
  • José Badal
  • Haiyan Yang
Article
  • 50 Downloads

Abstract

The southeast margin of Tibet is the region in clockwise rotation around the Eastern Himalayan Syntaxis due to the India–Eurasia collision and the resistance of the stable Sichuan Basin and South China block. However, the dynamic processes involved in the evolution and deformation of the region remain poorly understood due to a lack of reliable geophysical observations. We collected abundant seismic data recorded by 108 permanent broadband stations deployed in the SE margin of Tibet since 2000, and obtained 4536 pairs of P-wave receiver functions (PRFs) with high signal-to-noise ratio. In this study, we have implemented a novel two-step data inversion procedure that can reduce the dependence of the inversion results on the initial model. We first use low-frequency PRFs obtained by iterative deconvolution in the time domain, and then an initial model consisting of a series of 2-km-thick isotropic layers to fit velocity models, and thus determine an overall statistical solution by means of the bootstrap resampling technique. This statistical solution is then regarded as a new initial model to adjust high-frequency PRFs. Hence, the same resampling process is executed again to estimate the optimal S-wave velocity structure below each station. The results provide an accurate 3D image of the crust and uppermost mantle in the SE margin of Tibet. We infer a wide intra-crustal low-velocity zone that varies laterally and in depth, which is thinner or even absent in the most southern part of Yunnan. Our hypothesis is that this low-velocity zone is the result of the accumulation of lower crustal flow coming from central Tibet. Furthermore, we show that this lower crustal flow extends largely through the Sichuan–Yunnan diamond-shaped block, and that there are significant variations in both crustal velocity structure and deformation mechanism across the great strike-slip faults of the Jinshajiang–Red River and Xiaojiang fault systems.

Keywords

P-wave receiver functions two-step inversion bootstrap technique intra-crustal low-velocity zone lower crustal flow southeast margin of Tibet 

Notes

Acknowledgements

We are very grateful to the editor Dr. Arthur Snoke and two anonymous reviewers for their helpful comments and constructive suggestions that made possible a better presentation of this paper. The National Natural Science Foundation of China provided financial support for this research work (Grants 41304076, 41374106 and 41464003).

References

  1. Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin of the Seismological Society of America, 81(6), 2504–2510.Google Scholar
  2. Ammon, C. J., Randall, G. E., & Zandt, G. (1990). On the non-uniqueness of receiver function inversions. Journal of Geophysical Research: Solid Earth, 95(B10), 15303–15318.CrossRefGoogle Scholar
  3. Armijo, R., Tapponnier, P., Mercier, J. L., & Han, T. L. (1986). Quaternary extension in southern Tibet: Field observations and tectonic implications. Journal of Geophysical Research: Solid Earth, 91(B14), 13803–13872.CrossRefGoogle Scholar
  4. Bai, D., Unsworth, M., Meju, M., Ma, X., Teng, J., Kong, X., et al. (2010). Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5), 358–362.CrossRefGoogle Scholar
  5. Bao, X., Sun, X., Xu, M., Eaton, D. W., Song, X., Wang, L., et al. (2015). Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth and Planetary Science Letters, 415, 16–24.CrossRefGoogle Scholar
  6. Berteussen, K. A. (1977). Moho depth determinations based on spectral ratio analysis of NORSAR long-period P-waves. Physics of the Earth and Planetary Interiors, 15(1), 13–27.CrossRefGoogle Scholar
  7. Bird, P. (1991). Lateral extrusion of lower crust from under high topography, in the isostatic limit. Journal of Geophysical Research: Solid Earth, 96(B6), 10275–10286.CrossRefGoogle Scholar
  8. Brace, W. F., & Kohlstedt, D. L. (1980). Limits on lithospheric stress imposed by laboratory experiments. Journal of Geophysical Research: Solid Earth, 85(B11), 6248–6252.CrossRefGoogle Scholar
  9. Burchfiel, B. C., Chen, Z., Liu, Y., & Royden, L. H. (1995). Tectonics of the Longmen Shan and adjacent regions, Central China. International Geology Review, 37(8), 661–735.CrossRefGoogle Scholar
  10. Burchfiel, B. C., Royden, L. H., van der Hilst, R. D., Hager, B. H., Chen, Z., King, R. W., et al. (2008). A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China. GSA Today, 18(7), 4–11.CrossRefGoogle Scholar
  11. Cassidy, J. (1992). Numerical experiments in broadband receiver functions analysis. Bulletin of the Seismological Society of America, 82(3), 1453–1474.Google Scholar
  12. Chen, M., Huang, H., Yao, H., van der Hilst, R., & Niu, F. (2014). Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography. Geophysical Research Letters, 41(2), 334–340.CrossRefGoogle Scholar
  13. Clark, M. K., & Royden, L. H. (2000). Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8), 703–706.CrossRefGoogle Scholar
  14. Copley, A. (2008). Kinematics and dynamics of the southeast margin of the Tibetan Plateau. Geophysical Journal International, 174(3), 1081–1100.CrossRefGoogle Scholar
  15. Copley, A., & McKenzie, D. (2007). Model of crustal flow in the India–Asia collision zone. Geophysical Journal International, 169(2), 683–698.CrossRefGoogle Scholar
  16. Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Cambridge series in statistical and probabilistic mathematics). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. Efron, B., & Tibshirani, R. (1991). Statistical data analysis in the computer age. Science, 253(5018), 390–395.CrossRefGoogle Scholar
  18. England, P., & Molnar, P. (1997). Active deformation of Asia: From kinematics to dynamics. Science, 278(5338), 647–650.CrossRefGoogle Scholar
  19. Gan, W., Zhang, P., Shen, Z., Niu, Z., Wang, M., Wan, Y., et al. (2007). Presentday crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research: Solid Earth, 112(B8), B08416.CrossRefGoogle Scholar
  20. Hu, J., Badal, J., Yang, H., Li, G., & Peng, H. (2018). Comprehensive crustal structure and seismological evidence for lower crustal flow in the southeast margin of Tibet revealed by receiver functions. Gondwana Research, 55, 42–59.CrossRefGoogle Scholar
  21. Hu, J., Su, Y., Zhu, X., & Chen, Y. (2005). S wave velocity and Poisson’s ratio structure of the crust in Yunnan and its implication. Science in China Series D, 48(2), 210–218.CrossRefGoogle Scholar
  22. Hu, J., Yang, H., Li, G., & Peng, H. (2015). Seismic upper mantle discontinuities beneath Southeast Tibet and geodynamic implications. Gondwana Research, 28(3), 1032–1047.CrossRefGoogle Scholar
  23. Julià, J., Ammon, C. J., Herrmann, R. B., & Correig, A. M. (2000). Joint inversion of receiver function and surface wave dispersion observations. Geophysical Journal International, 143(1), 99–112.CrossRefGoogle Scholar
  24. Kind, R., Yuan, X., & Kumar, P. (2012). Seismic receiver functions and the lithosphere–asthenosphere boundary. Tectonophysics, 536–537, 25–43.CrossRefGoogle Scholar
  25. Klemperer, S. L. (2006). Crustal flow in Tibet: A review of geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow. Geological Society, London, Special Publication, 268(1), 39–70.CrossRefGoogle Scholar
  26. Kong, F., Wu, J., Liu, K. H., & Gao, S. (2016). Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas. Earth and Planetary Science Letters, 442, 72–79.CrossRefGoogle Scholar
  27. Langston, C. A. (1979). Structure under Mount Rainer, Washington, inferred from teleseismic body wave. Journal of Geophysical Research: Solid Earth, 84(B9), 4749–4762.CrossRefGoogle Scholar
  28. Lei, J., Li, Y., Xie, F., Teng, J., Zhang, G., Sun, C., et al. (2014). Pn anisotropic tomography and dynamics under eastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 119(3), 2174–2198.Google Scholar
  29. Lei, J., Zhao, D., & Su, Y. (2009). Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. Journal of Geophysical Research: Solid Earth, 114(B5), B05302.CrossRefGoogle Scholar
  30. Li, C., van der Hilst, R., Meltzer, A. S., & Engdahl, E. R. (2008). Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1–2), 157–168.CrossRefGoogle Scholar
  31. Ligorría, J. P., & Ammon, C. J. (1999). Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5), 1395–1400.Google Scholar
  32. Liu, Q. Y., van der Hilst, R. D., Li, Y., Yao, H. J., Chen, J. H., Guo, B., et al. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nature Geoscience, 7(5), 361–365.CrossRefGoogle Scholar
  33. Meltzer, A. S., Bürgmann, R., van der Hilst, R. D., King, R., Chen, Z., Koons, P. O., et al. (2007). Geodynamics of the southeast Tibetan Plateau from seismic anisotropy and geodesy. Geology, 35(6), 563–566.CrossRefGoogle Scholar
  34. Molnar, P., & Tapponnier, P. (1975). Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189(4201), 419–426.CrossRefGoogle Scholar
  35. Peng, H., Yang, H., Hu, J., & Badal, J. (2017). Three-dimensional S-velocity structure of the crust in the southeast margin of the Tibetan plateau and geodynamic implications. Journal of Asian Earth Sciences, 148, 210–222.CrossRefGoogle Scholar
  36. Rippe, D., & Unsworth, M. (2010). Quantifying crustal flow in Tibet with magnetotelluric data. Physics of the Earth and Planetary Interiors, 179(3–4), 107–121.CrossRefGoogle Scholar
  37. Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E. C., Chen, Z. L., Shen, F., et al. (1997). Surface deformation and lower crustal flow in Eastern Tibet. Science, 276(5313), 788–790.CrossRefGoogle Scholar
  38. Royden, L. H., Burchfiel, B. C., & van der Hilst, R. D. (2008). The geological evolution of the Tibetan Plateau. Science, 321(5892), 1054–1058.CrossRefGoogle Scholar
  39. Sun, Y., Liu, J., Zhou, K., et al. (2015). Crustal structure and deformation under the Longmenshan and its surroundings revealed by receiver function data. Physics of the Earth and Planetary Interiors, 244, 11–22.CrossRefGoogle Scholar
  40. Sun, Y., Niu, F., Liu, H., Chen, Y., & Liu, J. (2012). Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data. Earth and Planetary Science Letters, 349–350, 186–197.CrossRefGoogle Scholar
  41. Tapponnier, P., Peltzer, G., & Armijo, R. (1986). On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications, 19(1), 113–157.CrossRefGoogle Scholar
  42. Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611–616.CrossRefGoogle Scholar
  43. Wang, E. C., & Burchfiel, B. C. (2000). Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeast part of the Tibetan Plateau. Geological Society of America Bulletin, 112(3), 413–423.CrossRefGoogle Scholar
  44. Wang, C. Y., Chan, W. W., & Mooney, W. D. (2003). Three-dimensional velocity structure of crust and uppermantle in southwestern China and its tectonic implications. Journal of Geophysical Research: Solid Earth, 108(B9), 2442.CrossRefGoogle Scholar
  45. Wang, C. Y., Han, W. B., Wu, J. P., Lou, H., & Chan, W. (2007a). Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. Journal of Geophysical Research: Solid Earth, 112(B7), B07307.Google Scholar
  46. Wang, C. Y., Lou, H., Silver, P. G., Zhu, L., & Chang, L. (2010). Crustal structure variation along 30°N in the eastern Tibetan Plateau and its tectonic implications. Earth and Planetary Science Letters, 289(3–4), 367–376.CrossRefGoogle Scholar
  47. Wang, W., Wu, J., Fang, L., Lai, G., & Cai, Y. (2017). Crustal thickness and Poisson’s ratio in southwest China based on data from dense seismic arrays. Journal of Geophysical Research: Solid Earth, 122(9), 7219–7235.Google Scholar
  48. Wang, W., Wu, J., Fang, L., Lai, G., Yang, T., & Cai, Y. (2014). S wave velocity structure in southwest China from surface wave tomography and receiver functions. Journal of Geophysical Research: Solid Earth, 119(2), 1061–1078.Google Scholar
  49. Wang, Y., Zhang, X., Jiang, C., Wei, H., & Wan, J. (2007b). Tectonic controls on the late Miocene–Holocene volcanic eruptions of the Tengchong volcanic field along the southeast margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 30(2), 375–389.CrossRefGoogle Scholar
  50. Wessel, P., & Smith, W. H. F. (1998). New, improved version of the generic mapping tool released. Eos, Transactions American Geophysical Union, 79, 579.CrossRefGoogle Scholar
  51. Xie, J., Ritzwoller, M. H., Shen, W., Yang, Y., Zheng, Y., & Zhou, L. (2013). Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. Journal of Geophysical Research: Solid Earth, 118(8), 4226–4252.Google Scholar
  52. Xu, L., Rondenay, S., & van der Hilst, R. D. (2007). Structure of the crust beneath the southeast Tibetan Plateau from teleseismic receiver functions. Physics of the Earth and Planetary Interiors, 165(3–4), 176–193.CrossRefGoogle Scholar
  53. Yang, Y., & Liu, M. (2009). Crustal thickening and lateral extrusion during the Indo-Asian collision: A 3D viscous flow model. Tectonophysics, 465(1–4), 128–135.CrossRefGoogle Scholar
  54. Yao, H., Beghein, C., & van der Hist, R. D. (2008). Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis: II. Crustal and upper-mantle structure. Geophysical Journal International, 173(1), 205–219.CrossRefGoogle Scholar
  55. Yao, H., van der Hilst, R. D., & Montagner, J. P. (2010). Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. Journal of Geophysical Research: Solid Earth, 115(B12), B12307.CrossRefGoogle Scholar
  56. Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan–Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1), 211–280.CrossRefGoogle Scholar
  57. Zandt, G., & Ammon, C. J. (1995). Continental-crust composition constrained by measurements of crustal Poisson ratio. Nature, 374(9), 152–154.CrossRefGoogle Scholar
  58. Zhang, P. (2013). A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584, 7–22.CrossRefGoogle Scholar
  59. Zhang, Z., Bai, Z., Klemperer, S. L., Tian, X., Xu, T., Chen, Y., et al. (2013). Crustal structure across the northeastern Tibet from wideangle seismic profiling: Constraints on Caledonian Qilian orogeny and its reactivation. Tectonophysics, 606, 140–159.CrossRefGoogle Scholar
  60. Zhang, Z., Bai, Z., Wang, C., Teng, J., Lv, Q., Li, J., et al. (2005a). The crustal structure under Sanjiang and its dynamic implications: Revealed by seismic reflection/refraction profile between Zhefang and Binchuan, Yunnan. Science in China Series D, 48(9), 1329–1336.CrossRefGoogle Scholar
  61. Zhang, Z., Bai, Z., Wang, C., Teng, J., Lv, Q., Li, J., et al. (2005b). Crustal structure of Gondwana-and Yangtze-typed blocks: An example by wide-angle seismic profile from Menglian to Malong in western Yunnan. Science in China Series D, 48(11), 1828–1836.CrossRefGoogle Scholar
  62. Zhang, Z., Deng, Y., Teng, J., Wang, C., Gao, R., Che, Y., et al. (2011). An overview of the crustal structure of the Tibetan Plateau after 35 years of deep seismic soundings. Journal of Asian Earth Sciences, 40(4), 977–989.CrossRefGoogle Scholar
  63. Zhang, P., Shen, Z., Wang, M., & Gan, W. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809–812.CrossRefGoogle Scholar
  64. Zhang, Z., Wang, Y., Chen, Y., Houseman, G. A., Tian, X., Wang, E., et al. (2009). Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophysical Research Letters, 36(17), L17310.CrossRefGoogle Scholar
  65. Zhang, Z., Yuan, X., Chen, Y., Tian, X., Kind, R., Li, X., et al. (2010). Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Earth and Planetary Science Letters, 292(3–4), 254–264.CrossRefGoogle Scholar
  66. Zhu, L., & Kanamori, H. (2000). Moho depth variations in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2), 2969–2980.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hengchu Peng
    • 1
  • Jiafu Hu
    • 1
    Email author
  • José Badal
    • 2
  • Haiyan Yang
    • 1
  1. 1.Department of GeophysicsYunnan UniversityKunmingPeople’s Republic of China
  2. 2.Physics of the Earth, Sciences BUniversity of ZaragozaSaragossaSpain

Personalised recommendations