Advertisement

Vertical Structure of the Ionospheric Response Following the Mw 7.9 Wenchuan Earthquake on 12 May 2008

  • Xiangxiang Yan
  • Tao YuEmail author
  • Yangyi Sun
  • Chunliang Xia
  • Xiaomin Zuo
  • Na Yang
  • Yifan Qi
  • Jin Wang
Article
  • 29 Downloads

Abstract

The response of the vertical ionospheric electron density structure to the Mw 7.9 Wenchuan earthquake on 12 May 2008 was recorded by the FORMOSAT-3/COSMIC (F3/C) radio occultation (RO) precise orbit determination (POD) total electron content (TEC). The horizontal propagation characteristics of the seismo-traveling ionospheric disturbances were identified by combining ground-based Global Navigation Satellite System (GNSS) TEC data and RO TEC data. The postseismic ionospheric infrasound wavefront with wavelength of around 80 km at altitude of 150–350 km was scanned vertically by an individual RO TEC profile. A large amount of TEC profiles around the epicenter from 0000 to 1200 UT provide evidence of continental earthquake-induced vertical oscillations that lasted in the ionosphere for several hours. RO-observed vertical perturbations appear on both the southward and northward sides of the epicenter. The vertical structure of the ionospheric oscillations with wavelength ranging from 10 to 80 km increased with altitude between 230 and 650 km.

Keywords

Wenchuan earthquake ionospheric oscillations vertical structure radio occultation 

Notes

Acknowledgements

This work is supported by the NSFC (41604135, 41774164), China Postdoctoral Science Foundation-funded project (1231703), State Key Laboratory of Earthquake Dynamics (LED2015B04), Key Laboratory of Earth and Planetary Physics, as well as Hubei Subsurface Multi-scale Imaging Key Laboratory. The F3/C RO data were obtained from the COSMIC Data Analysis Archive Center (CDAAC) (http://cdaac-www.cosmic.ucar.edu/cdaac/index.html). The ground-based GNSS data were obtained from the Crustal Movement Observation Network of China (CMONOC), the International Global Navigation Satellite Systems (GNSS) Service (IGS), and the Wuhan Institute of Heavy Rain, China Meteorological Administration. The seismometer data were obtained from the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (http://www.iris.edu). The authors thank Prof. B. Zhao, Institute of Geology and Geophysics, Chinese Academy of Sciences, for proving the derived slant TEC data. The authors thank two reviewers for their comments and suggestions.

References

  1. Afraimovich, E. L., Ding, F., Kiryushkin, V. V., Astafyeva, E. I., Jin, S., & Sankov, V. A. (2010). TEC response to the 2008 Wenchuan Earthquake in comparison with other strong earthquakes. International Journal of Remote Sensing, 31(13), 3601–3613.  https://doi.org/10.1080/01431161003727747.CrossRefGoogle Scholar
  2. Alexander, P., de la Torre, A., & Llamedo, P. (2008). Interpretation of gravity wave signatures in GPS radio occultations. Journal of Geophysical Research Atmospheres.  https://doi.org/10.1029/2007JD009390.Google Scholar
  3. Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F., Ector, D., et al. (2008). The COSMIC/Formosat-3 mission: Early results. Bulletin of the American Meteorological Society, 89(3), 313–333.  https://doi.org/10.1175/BAMS-89-3-313.CrossRefGoogle Scholar
  4. Astafyeva, E., Heki, K., Kiryushkin, V., Afraimovich, E., & Shalimov, S. (2009). Two-mode long-distance propagation of coseismic ionosphere disturbances. Journal of Geophysical Research, 114, A10307.  https://doi.org/10.1029/2008JA013853.CrossRefGoogle Scholar
  5. Astafyeva, E., Lognonné, P., & Rolland, L. (2011). First ionospheric images of the seismic fault slip on the example of the Tohoku-oki earthquake. Geophysical Research Letters, 38(22), 1–6.  https://doi.org/10.1029/2011GL049623.CrossRefGoogle Scholar
  6. Berngardt, O. I., Perevalova, N. P., Podlesnyi, A. V., Kurkin, V. I., & Zherebtsov, G. A. (2016). Vertical midscale ionospheric disturbances caused by surface seismic waves based on Irkutsk chirp ionosonde data in 2011–2016. Journal of Geophysical Research: Space Physics.  https://doi.org/10.1002/2016JA023511.Google Scholar
  7. Calais, E., & Minster, J. B. (1995). GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophysical Research Letters, 22(9), 1045–1048.  https://doi.org/10.1029/95gl00168.CrossRefGoogle Scholar
  8. Chen, S. P., Bilitza, D., Liu, J. Y., Caton, R., Chang, L. C., & Yeh, W. H. (2017). An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data. Advances in Space Research, 60(5), 1015–1028.  https://doi.org/10.1016/j.asr.2017.05.031.CrossRefGoogle Scholar
  9. Chen, G., Wang, J., Wu, C., Huang, X., Zhong, D., Qi, H., et al. (2016). Multisite remote sensing for tsunami-induced waves. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 7177–7184.  https://doi.org/10.1109/TGRS.2016.2597165.CrossRefGoogle Scholar
  10. Choosakul, N., Saito, A., Iyemori, T., & Hashizume, M. (2009). Excitation of 4-min periodic ionospheric variations following the great Sumatra-Andaman earthquake in 2004. Journal of Geophysical Research: Space Physics.  https://doi.org/10.1029/2008JA013915.Google Scholar
  11. Coïsson, P., Lognonné, P., Walwer, D., & Rolland, L. M. (2015). First tsunami gravity wave detection in ionospheric radio occultation data. Earth and Space Science, 2(5), 125–133.  https://doi.org/10.1002/2014EA000054.CrossRefGoogle Scholar
  12. Dautermann, T., Calais, E., Lognonné, P., & Mattioli, G. S. (2009). Lithosphere-atmosphere-ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills Volcano, Montserrat. Geophysical Journal International, 179, 1537–1546.  https://doi.org/10.1111/j.1365-246X.2009.04390.x.CrossRefGoogle Scholar
  13. Fishbach, F. F. (1965). A satellite method for temperature and pressure below 24 km. Bulletin of the American Meteorological Society, 46(9), 528–532.  https://doi.org/10.1175/1520-0477-46.9.528.CrossRefGoogle Scholar
  14. Galvan, D. A., Komjathy, A., Hickey, M. P., Stephens, P., Snively, J., Tony Song, Y., et al. (2012). Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: Model comparisons near the epicenter. Radio Science.  https://doi.org/10.1029/2012RS005023.Google Scholar
  15. Garcia, R. F., Doornbos, E., Bruinsma, S., & Hebert, H. (2014). Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE. Journal of Geophysical Research, 119(8), 4498–4506.  https://doi.org/10.1002/2013JD021120.Google Scholar
  16. Heki, K., & Ping, J. (2005). Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array. Earth and Planetary Science Letters, 236(3–4), 845–855.  https://doi.org/10.1016/j.epsl.2005.06.010.CrossRefGoogle Scholar
  17. Hocke, K., & Tsuda, T. (2001). Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation. Geophysical Research Letters, 28(14), 2815–2818.  https://doi.org/10.1029/2001GL013076.CrossRefGoogle Scholar
  18. Jin, S., Jin, R., & Li, J. H. (2014). Pattern and evolution of seismo-ionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations. Journal of Geophysical Research: Space Physics, 119(9), 7914–7927.  https://doi.org/10.1002/2014JA019825.Google Scholar
  19. Jin, S., Zhu, W., & Afraimovich, E. (2010). Co-seismic ionospheric and deformation signals on the 2008 magnitude 8.0 Wenchuan Earthquake from GPS observations. International Journal of Remote Sensing, 31(13), 3535–3543.  https://doi.org/10.1080/01431161003727739.CrossRefGoogle Scholar
  20. Klobuchar, J. A. (1987). Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on Aerospace and Electronic Systems, AES, 23(3), 325–331.  https://doi.org/10.1109/TAES.1987.310829.CrossRefGoogle Scholar
  21. Lanyi, G. E., & Roth, T. (1988). A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Science, 23(4), 483–492.  https://doi.org/10.1029/rs023i004p00483.CrossRefGoogle Scholar
  22. Liu, J. Y., Chen, C. H., Sun, Y. Y., Chen, C. H., Tsai, H. F., Yen, H. Y., et al. (2016). The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake over Taiwan. Geophysical Research Letters, 43(4), 1759–1765.  https://doi.org/10.1002/2015GL067487.CrossRefGoogle Scholar
  23. Liu, J., & Sun, Y. (2011). Seismo-traveling ionospheric disturbances of ionograms observed during the 11 March 2011 M9.0 Tohoku Earthquake. Earth Planets Space (March).  https://doi.org/10.5047/eps.2011.05.017.Google Scholar
  24. Liu, J. Y., Sun, Y. Y., Tsai, H. F., & Lin, C. H. (2012). Seismo-traveling ionospheric disturbances triggered by the 12 May 2008 M 8.0 Wenchuan Earthquake. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 23, 9–15.  https://doi.org/10.3319/TAO.2011.08.03.01(T).Google Scholar
  25. Lognonné, P., Clévédé, E., & Kanamori, H. (1998). Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical earth model with realistic atmosphere. Geophysical Journal International.  https://doi.org/10.1046/j.1365-246X.1998.00665.x.Google Scholar
  26. Makela, J. J., Lognonné, P., Hébert, H., Gehrels, T., Rolland, L., Allgeyer, S., et al. (2011). Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku earthquake of 11 March 2011. Geophysical Research Letters.  https://doi.org/10.1029/2011GL047860.Google Scholar
  27. Maruyama, T., Yusupov, K., & Akchurin, A. (2016). Ionosonde tracking of infrasound wavefronts in the thermosphere launched by seismic waves after the 2010 M8.8 Chile earthquake. Journal of Geophysical Research A: Space Physics, 121(3), 2683–2692.  https://doi.org/10.1002/2015JA022260.Google Scholar
  28. Matsumura, M., Saito, A., Iyemori, T., Shinagawa, H., Tsugawa, T., Otsuka, Y., et al. (2011). Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63(7), 885–889.  https://doi.org/10.5047/eps.2011.07.015.CrossRefGoogle Scholar
  29. Nakashima, Y., Heki, K., Takeo, A., Cahyadi, M. N., Aditiya, A., & Yoshizawa, K. (2016). Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals. Earth and Planetary Science Letters, 434, 112–116.  https://doi.org/10.1016/j.epsl.2015.11.029.CrossRefGoogle Scholar
  30. Nishioka, M., Tsugawa, T., Kubota, M., & Ishii, M. (2013). Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophysical Research Letters, 40(21), 5581–5586.  https://doi.org/10.1002/2013GL057963.CrossRefGoogle Scholar
  31. Otsuka, Y., Kotake, N., Tsugawa, T., Shiokawa, K., Ogawa, T., & Komolmis, T. (2006). GPS detection of total electron content variations over Indonesia and Thailand following the 26 December 2004 earthquake. Earth, Planets and Space, 58, 159–165.  https://doi.org/10.1186/BF03353373.CrossRefGoogle Scholar
  32. Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics, 107(A12), SIA 15-1–SIA 15-16.  https://doi.org/10.1029/2002JA009430.CrossRefGoogle Scholar
  33. Rolland, L. M., Lognonné, P., Astafyeva, E., Kherani, E. A., Kobayashi, N., Mann, M., et al. (2011a). The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63(7), 853–857.  https://doi.org/10.5047/eps.2011.06.020.CrossRefGoogle Scholar
  34. Rolland, L. M., Lognonné, P., & Munekane, H. (2011b). Detection and modeling of Rayleigh wave induced patterns in the ionosphere. Journal of Geophysical Research: Space Physics.  https://doi.org/10.1029/2010JA016060.Google Scholar
  35. Rolland, L. M., Vergnolle, M., Nocquet, J. M., Sladen, A., Dessa, J. X., Tavakoli, F., et al. (2013). Discriminating the tectonic and non-tectonic contributions in the ionospheric signature of the 2011, Mw7.1, dip-slip Van earthquake, Eastern Turkey. Geophysical Research Letters, 40(11), 2518–2522.  https://doi.org/10.1002/grl.50544.CrossRefGoogle Scholar
  36. Saito, A. (2011). Acoustic resonance and plasma depletion detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63(7), 863–867.  https://doi.org/10.5047/eps.2011.06.034.CrossRefGoogle Scholar
  37. Smith, S. M., Martinis, C. R., Baumgardner, J., & Mendillo, M. (2015). All-sky imaging of transglobal thermospheric gravity waves generated by the March 2011 Tohoku Earthquake. Journal of Geophysical Research, A: Space Physics, 120(12), 10992–10999.  https://doi.org/10.1002/2015JA021638.Google Scholar
  38. Sun, Y. Y., Liu, J. Y., Lin, C. Y., Tsai, H. F., Chang, L. C., Chen, C. Y., et al. (2016). Ionospheric F2 region perturbed by the 25 April 2015 Nepal earthquake. Journal of Geophysical Research: Space Physics.  https://doi.org/10.1002/2015JA022280.Google Scholar
  39. Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78.  https://doi.org/10.1175/1520-0477(1998)079%3c0061:APGTWA%3e2.0.CO;2.CrossRefGoogle Scholar
  40. Tulasi Ram, S., Sunil, P. S., Ravi Kumar, M., Su, S. Y., Tsai, L. C., & Liu, C. H. (2017). Coseismic traveling ionospheric disturbances during the Mw7.8 Gorkha, Nepal, earthquake on 25 April 2015 from ground and spaceborne observations. Journal of Geophysical Research: Space Physics, 122(10), 10669–10685.  https://doi.org/10.1002/2017JA023860.Google Scholar
  41. Yan, X., Sun, Y., Yu, T., Liu, J.-Y., Qi, Y., Xia, C., et al. (2018). Stratosphere perturbed by the 2011 Mw9.0 Tohoku earthquake. Geophysical Research Letters.  https://doi.org/10.1029/2018gl079046.Google Scholar
  42. Yang, Y. M., Meng, X., Komjathy, A., Verkholyadova, O., Langley, R. B., Tsurutani, B. T., et al. (2014). Tohoku-Oki earthquake caused major ionospheric disturbances at 450 km altitude over Alaska. Radio Science, 49(12), 1206–1213.  https://doi.org/10.1002/2014RS005580.CrossRefGoogle Scholar
  43. Yue, X., Schreiner, W. S., Hunt, D. C., Rocken, C., & Kuo, Y. H. (2011). Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination. Space Weather.  https://doi.org/10.1029/2011SW000687.Google Scholar
  44. Zhao, B., & Hao, Y. (2015). Ionospheric and geomagnetic disturbances caused by the 2008 Wenchuan earthquake: A revisit. Journal of Geophysical Research, A: Space Physics, 120(7), 5758–5777.  https://doi.org/10.1002/2015JA021035.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and GeomaticsChina University of GeosciencesWuhanChina
  2. 2.Key Laboratory of Earth and Planetary Physics, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Earthquake Dynamics, Institute of GeologyChina Earthquake AdministrationBeijingChina

Personalised recommendations