Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 4, pp 1359–1377 | Cite as

A Study of Ground Motion Excitation Based on the Earthquake of September 8, 2017: Evidence that Normal Faults Influence the Stress Parameter

  • Roberto OrtegaEmail author
  • Dana Carciumaru
  • Luis Quintanar
  • Eduardo Huesca-Pérez
  • Edahí Gutiérrez-Reyes
Article
  • 138 Downloads
Part of the following topical collections:
  1. The September 2017 Chiapas and Central Mexico earthquakes and tsunamis

Abstract

We performed a study of ground motion modeling based on multiple linear regression and random vibration theory using the earthquake sequence of September 8, 2017 (Mw = 8.2). Our results show that there is high attenuation in the region of Oaxaca–Chiapas and central Mexico; however, the peak amplitude excitations of normal fault earthquakes are higher than those of thrust fault earthquakes. The earthquake sequence involved a large number of events, but not all the seismic events were aftershocks because many earthquakes had different rupture styles. The thrust events follow a simple scaling relation with a constant stress parameter, but the normal fault events are difficult to represent with a constant self-similar model. Our best result consists of a \(Q_{0} = 240 \pm 032\) with a frequency-dependent factor of \(0.63 \pm 0.05\). The excitation term is well determined with a stress parameter of 80 bars for the thrust faults, but for the normal faults, the stress parameter is at least 180 bars with a non-self-similar model. Our results show that it is necessary to include new ground motion prediction equations in seismic hazard analysis for “meganormal” faults, which have not previously been considered in subduction zones.

Keywords

Stress parameter ground motion earthquake on September 8, 2017 (Mw = 8.2) normal faults 

Notes

Acknowledgements

Two anonymous reviewers are thanked for reading the manuscript and providing substantial advice. This work was supported by the Projects CONACYT CB 133910, CICESE ULP 691115. 691114; “Catedras Jovenes Conacyt” Grant Numbers 097 and 2284; and “Secretaría de Ciencia Tecnología e Innovación de la Ciudad de México” Project Number CM-SECITI/045/2017. In addition, the authors acknowledge Sergio Mayer and Víctor Hugo Espíndola for assistance with the earthquake relocation.

References

  1. Abrahamson, N., Gregor, N., & Addo, K. (2016). BC hydro ground motion prediction equations for subduction earthquakes. Earthquake Spectra, 32, 23–44.CrossRefGoogle Scholar
  2. Aki, K. (1980). Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz. Physics Earth Planet Interiors, 21, 50–60.CrossRefGoogle Scholar
  3. Anderson, J. G., & Hough, S. H. (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of Seismological Society of America, 74, 1969–1993.Google Scholar
  4. Anderson, J. G., & Lei, Y. (1994). Non-parametric description of peak acceleration as a function of magnitude, distance and site in Guerrero Mexico. Bulletin of Seismological Society of America, 84, 1003–1017.Google Scholar
  5. Atkinson, G. M., & Beresnev, I. A. (1997). Don’t call it stress drop. Seismological Research Letters, 68, 3–4.CrossRefGoogle Scholar
  6. Beauval, C., Cotton, F., Abrahamson, N., Theodulidis, N., Delavaud, E., Rodriguez, L., et al. (2012). Regional differences in subduction ground motions. In Fifteenth world conference on earthquake engineering, Lisbon Portugal WCEE, Abstract.Google Scholar
  7. Boore, D. M. (1983). Stochastic simulation of high frequency ground motion based on seismological models of the radiated spectra. Bulletin of Seismological Society of America, 73, 1865–1894.Google Scholar
  8. Boore, D. M. (1996). SMSIM—Fortran programs for simulating ground motions from earthquakes: Version 1.0. U.S. geological survey open-file report. 96-80-A, Menlo Park, California.Google Scholar
  9. Boore, D. M. (2003). Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 160, 635–676.CrossRefGoogle Scholar
  10. Boore, D. M., & Joyner, W. B. (1997). Site amplification for generic rock sites. Bulletin of Seismological Society of America, 87, 327–341.Google Scholar
  11. Bravo, H., Rebollar, C. J., Uribe, A., & Jimenez, O. (2004). Geometry and state of stress of the Wadati–Benioff zone in the Gulf of Tehuantepec. Journal of Geophysical Research, 109(B04307), 1–14.Google Scholar
  12. Brune, J. N. (1970). Tectonic stresses and spectra of seismic waves from earthquakes. Journal of Geophysical Research, 75, 4997–5009.CrossRefGoogle Scholar
  13. Burger, R., Somerville, P., Barker, J., Herrmann, R., & Helmberger, D. (1987). The effect of crustal structure on strong ground motion attenuation relations in eastern North America. Bulletin of Seismological Society of America, 77, 420–439.Google Scholar
  14. Campbell, K., & Bozorgnia, Y. (2003). Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra. Bulletin of Seismological Society of America.  https://doi.org/10.1785/0120020029.Google Scholar
  15. Cartwright, D. E., & Longuet-Higgins, M. S. (1956). The statistical distribution of the maxima of a random function. Proceedings of the Royal Society of London A, 237, 212–223.CrossRefGoogle Scholar
  16. Castellanos, J. C., Clayton, R. W., & Pérez-Campos, X. (2018). Imaging the eastern trans-Mexican volcanic belt with ambient seismic noise: Evidence for a slab tear. Journal of Geophysical Research, 1, 1.  https://doi.org/10.1029/2018JB015783.Google Scholar
  17. Chao, K., Gonzalez-Huizar, H., Tang, V., Klaeser, R. D., Mattia, M., & Van der Lee, S. (2017). Global examination of triggered tectonic tremor following the 2017 Mw 8.1 Tehuantepec earthquake in Mexico. American Geophysical Union, Fall Meeting 2017, Abstract.Google Scholar
  18. Chapman, M. C., & Goodbee, R. W. (2012). Modeling geometrical spreading and the relative amplitudes of vertical and horizontal high-frequency ground motions in eastern North America. Bulletin of Seismological Society of America, 1, 1.  https://doi.org/10.1785/0120110081.Google Scholar
  19. DOF. (2017). 18/09/2017. Declaratoria de Emergencia Extraordinaria por la presencia de sismo magnitud 8.2, el día 7 de septiembre de 2017, para 118 municipios del Estado de Chiapas. (http://dof.gob.mx/nota_detalle.php?codigo=5497536&fecha=18/09/2017&print=true (in Spanish). Accessed 28 December 2018.
  20. Duputel, Z., Gombert, B., Simons, M., Fielding, E. J., Rivera, L. A., Bekaert, D. P., et al. (2017). The 2017 Mw = 8.2 Tehuantepec earthquake: A slab bending or slab pull rupture? American Geophysical Union, Fall Meeting 2017, Abstract.Google Scholar
  21. Fielding, E. J., Gombert, B., Duputel, Z., Huang, M. H., Liang, C., Bekaert, D. P., et al. (2017). Earthquake triggering in the September 2017 Mexican earthquake sequence. American Geophysical Union, Fall Meeting 2017, Abstract.Google Scholar
  22. Franco, A., Lasserre, C., Lyon-Caen, H., Kostoglodov, V., Molina, E., Guzman-Speziale, M., et al. (2012). Fault kinematics in northern Central America and coupling along the subduction interface of the Cocos Plate, from GPS data in Chiapas (Mexico), Guatemala and El Salvador. Geophysical Journal International, 189, 1223–1236.CrossRefGoogle Scholar
  23. Furumura, T., & Kennett, B. L. N. (1998). On the nature of regional seismic phases-III. The influence of crustal heterogeneity on the wavefield for subduction earthquakes: The 1985 Michoacan and 1995 Copala, Guerrero, Mexico earthquakes. Geophysical Journal International, 135(3), 1060–1084.CrossRefGoogle Scholar
  24. Furumura, T., & Singh, S. K. (2002). Regional wave propagation from Mexican subduction zone earthquakes: The attenuation functions for interplate and inslab earthquakes. Bulletin of Seismological Society of America, 92(6), 2110–2125.CrossRefGoogle Scholar
  25. García, D., Singh, S. K., Harraiz, M., Ordaz, M., & Pacheco, J. F. (2005). Inslab earthquakes of Central Mexico: Peak ground motion parameters and response spectra. Bulletin of Seismological Society of America, 95, 2272–2282.CrossRefGoogle Scholar
  26. Gusman, A. R., Mulia, I. E., & Satake, K. (2018). Optimum sea surface displacement and fault slip distribution of the 2017 Tehuantepec earthquake (Mw 8.2) in Mexico estimated from tsunami waveforms. Geophysical Research Letters.  https://doi.org/10.1002/2017gl076070.Google Scholar
  27. Heidarzadeh, M., Ishibe, T., & Harada, T. (2018). Constraining the source of the Mw 8.1 Chiapas, Mexico earthquake of 8 September 2017 using teleseismic and tsunami observations. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-1837-6.Google Scholar
  28. Hernández, B., Shapiro, N. M., Singh, S. K., Pacheco, J. F., Cotton, F., Campillo, M., et al. (2001). Rupture history of September 30, 1999 intraplate earthquake of Oaxaca, Mexico (MW = 7.5) from inversion of strong-motion data. Geophysical Research Letters.  https://doi.org/10.1029/2000GL011975.Google Scholar
  29. Hjorleifsdottir, V., Iglesias, A., Suarez, G., Santoyo, M. A., Villafuerte, C. D., Ji, C., et al. (2017). The 2017/09/08 Mw 8.2 Tehuantepec, Mexico earthquake: A large but compact dip-slip faulting event severing the slab. American Geophysical Union, Fall Meeting 2017, Abstract.Google Scholar
  30. Ide, S., & Beroza, G. C. (2001). Does apparent stress vary with earthquake size? Geophysical Research Letters, 28, 3349–3352.CrossRefGoogle Scholar
  31. Iglesias, A., Atienza, V., Shapiro, N. M., Singh, S. K., & Pacheco, J. F. (2001). Crustal structure of south-central Mexico estimated from the inversion of surface wave dispersion curves using genetic and simulated annealing algorithms. Geofisica Internacional, 40, 181–190.Google Scholar
  32. Jeon, Y. S., & Herrmann, R. B. (2004). High-frequency earthquake ground-motion scaling in Utah and Yellowstone. Bulletin of Seismological Society of America, 94, 1644–1657.CrossRefGoogle Scholar
  33. Jimenez, C. (2018). Seismic source characteristics of the intraslab 2017 Chiapas–Mexico earthquake (Mw 8.2). Physics of the Earth and Planetary Interiors.  https://doi.org/10.1016/j.pepi.2018.04.013.Google Scholar
  34. Kanamori, H. (1977). Seismic and aseismic slip along subduction zones and their implications. In M. Talwani & W. C. Pitman (Eds.), Island arcs deep sea trenches and back-arc basins (pp. 162–174). Washington, D.C.: American Geophysical Union.Google Scholar
  35. Kelleher, J. A., & McCann, W. (1976). Buoyant zones, great earthquakes and unstable boundaries of subduction. Journal of Geophysical Research, 81, 4885–4896.CrossRefGoogle Scholar
  36. Kelleher, J. A., Sykes, L. R., & Oliver, J. (1973). Possible criteria for predicting earthquake locations and their application to major plate boundaries of the Pacific and the Caribbean. Journal of Geophysical Research, 78, 2547–2585.CrossRefGoogle Scholar
  37. Kim, Y., Clayton, R. W., & Jackson, J. M. (2010). Geometry and seismic properties of the subducting Cocos plate in central Mexico. Journal of Geophysical Research, 115(B6), 1–22.CrossRefGoogle Scholar
  38. Letort, J., Retailleau, L., Boué, P., Radiguet, M., Gardonio, B., Cotton, F., et al. (2018). Lateral variations of the Guerrero–Oaxaca subduction zone (Mexico) derived from weak seismicity (Mb3.5+) detected on a single array at teleseismic distance. Geophysical Journal International.  https://doi.org/10.1093/gji/ggy035.Google Scholar
  39. Li, J., Chen, W. P., & Ning, J. (2017). Disparate tectonic settings of devastating earthquakes in Mexico, September 2017. American Geophysical Union, Fall Meeting 2017, Abstract.Google Scholar
  40. Lin, P. S., & Lee, C. T. (2008). Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan. Bulletin of Seismological Society of America, 98(1), 220–240.CrossRefGoogle Scholar
  41. Mayeda, K., & Walter, W. R. (1996). Moment, energy, stress drop and source spectra of western United States earthquakes from regional coda envelopes. Journal of Geophysical Research, 101, 11195–11208.CrossRefGoogle Scholar
  42. Melgar, D., & Pérez-Campos, X. (2010). Imaging the Moho and subducted oceanic crust at the Isthmus of Tehuantepec, Mexico, from receiver functions. Pure and Applied Geophysics, 168, 1449–1460.CrossRefGoogle Scholar
  43. Melgar, D., Ruiz-Angulo, A., Soliman, E., Manea, M., Manea, V. C., Xu, X., et al. (2018). Deep embrittlement and complete rupture of the lithosphere during the Mw 8.2 Tehuantepec earthquake. Nature Geosciences.  https://doi.org/10.1038/s41561-018-0229-y.Google Scholar
  44. Melgar, D., Sahakian, V., Perez-Campos, X., Quintanar, L., Ramirez-Guzman, L., Spica, S., et al. (2017). Analysis of the source and ground motions from the 2017 M8.2 Tehuantepec and M7.1 Puebla earthquakes. AGU Fall meeting abstracts. http://adsabs.harvard.edu/abs/2017AGUFM.S33G2949M. Accessed 18 May 2018.
  45. Mitchell, B., Yu, Pan J., Xie, J., & Cong, L. (1997). Lg coda Q variation across Eurasia and its relation to crustal evolution. Journal of Geophysical Research, 102, 22767–22779.CrossRefGoogle Scholar
  46. National Aeronautics and Space Administration (NASA)., & Jet Propulsion Laboratory JPL), California Institute of Technology (CALTECH) Advanced Rapid Imaging and Analysis Team. (2017). 2017 09 08 Chiapas Mexico earthquake. https://aria.jpl.nasa.gov/node/65. Accessed 28 December 2018.
  47. Nishenko, S. P. (1991). Circum-pacific seismic potential: 1989–1999. Pure and Applied Geophysics, 135, 169–259.CrossRefGoogle Scholar
  48. NYT. (2017). Mexico earthquake, strongest in a century, kills dozens, New York Times, September 8th, 2017 by Paulina Villegas, Elisabeth Malkin and Kirk Semple. https://www.nytimes.com/2017/09/08/world/americas/mexico-earthquake.html. Accessed 28 December 2018.
  49. Okuwaki, R., & Yagi, Y. (2017). Rupture process during the MW 8.1 2017 Chiapas Mexico earthquake: Shallow intraplate normal faulting by slab bending. Geophysical Research Letters.  https://doi.org/10.1002/2017GL075956.Google Scholar
  50. Ortega, R., Carciumaru, D., Huesca, E., & Gutierrez, E. (2019). Automatic selection of dispersion curves based on a weighted probability scheme. Seismological Research Letters.  https://doi.org/10.1785/0220180282.Google Scholar
  51. Ortega, R., & Gonzalez, M. (2007). Seismic-wave attenuation and source excitation in La Paz–Los Cabos, Baja California Sur, Mexico. Bulletin of Seismological Society of America, 97, 545–556.CrossRefGoogle Scholar
  52. Ortega, R., Herrmann, R. B., & Quintanar, L. (2003). Earthquake ground motion scaling in central Mexico between 0.7 and 7 Hz. Bulletin of Seismological Society of America, 93, 397–413.CrossRefGoogle Scholar
  53. Ortega, R., & Quintanar, L. (2005). A study of the local magnitude scale in the Basin of Mexico: Mutually consistent estimates of log A0 and ground motion scaling. Bulletin of Seismological Society of America, 95, 605–613.CrossRefGoogle Scholar
  54. Ottemöller, L. M., Shapiro, N. M., Singh, S. K., & Pacheco, J. F. (2002). Lateral variation of Lg wave propagation in southern Mexico. Journal of Geophysical Research.  https://doi.org/10.1029/2001JB000206.Google Scholar
  55. Pardo, M., & Suarez, G. (1995). Shape of the subducted Rivera and Cocos plate in the southern Mexico: Seismic and tectonic implications. Journal of Geophysical Research, 100(B1), 12357–12373.CrossRefGoogle Scholar
  56. Perez Campos, X., Kim, Y. H., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., et al. (2008). Horizontal subduction and truncation of the Cocos Plate beneath Central Mexico. Geophysical Research Letters, 35(L18303), 1–6.Google Scholar
  57. Ponce, L., Gaulon, R., Suarez, G., & Lomas, E. (1992). Geometry and state of stress of the downgoing Cocos plate in the Isthmus of Tehuantepec, Mexico. Geophysical Research Letters, 19, 773–776.CrossRefGoogle Scholar
  58. Ramírez-Herrera, M. T., Corona, N., Ruiz-Angulo, A., Melgar, D., & Zavala-Hidalgo, J. (2018). The 8 September 2017 tsunami triggered by the Mw 8.2 intraplate earthquake, Chiapas, Mexico. Pure and Applied Geophysics, 175, 25–34.CrossRefGoogle Scholar
  59. Raoof, M., Herrmann, R. B., & Malagnini, L. (1999). Attenuation and excitation of three component ground motion in southern California. Bulletin of Seismological Society of America, 89, 888–902.Google Scholar
  60. Richardson, E. (2017). Aftershock comparisons of the Tehuantepec and Puebla earthquakes: Implications for the transition between aseismic and seismic behavior. American Geophysical Union, Fall Meeting 2017, Abstract.Google Scholar
  61. Ryan, W. B. F., Carbotte, S. M., Coplan, J., O’Hara, S., Melkonian, A., Arko, R., et al. (2009). Global multi-resolution topography (GMRT) synthesis data set. Geochemistry Geophysics and Geodesy.  https://doi.org/10.1029/2008GC002332.Google Scholar
  62. Sahakian, V. J., Melgar, D., Quintanar, L., Ramírez-Guzmán, L., Pérez-Campos, X., & Baltay, A. (2018). Ground motions from the 7 and 19 September 2017 Tehuantepec and Puebla–Morelos, Mexico, earthquakes. Bulletin of the Seismological Society of America.  https://doi.org/10.1785/0120180108.Google Scholar
  63. Shi, J., Kim, W., & Richards, P. G. (1998). The corner frequencies and stress drop of intraplate earthquakes in the northeastern United States. Bulletin of Seismological Society of America, 88, 531–542.Google Scholar
  64. Singh, S. K., Ordaz, M., Alcántara, L., Shapiro, N., Kostoglodov, K., Pacheco, J. F., et al. (2000). The Oaxaca earthquake of 30 September 1999 (Mw = 7.5). A normal-faulting event in the subducted cocos plate. Seismological Research Letters.  https://doi.org/10.1785/gssrl.71.1.67.Google Scholar
  65. Singh, S. K., Suarez, G., & Dominguez, T. (1985). The Oaxaca, Mexico, earthquake of 1931: Lithospheric normal faulting in the subducted Cocos plate. Nature, 317, 56–58.CrossRefGoogle Scholar
  66. SSN. (2017). Reporte especial: Sismo de Tehuantepec (2017-09-07 23:49 MW 8.2). http://www.ssn.unam.mx/sismicidad/reportes-especiales/2017/SSNMX_rep_esp_20170907_Tehuantepec_M82.pdf (in Spanish). Accessed 28 December 2018.
  67. Stachnik, J. C., & Abers, G. A. (2004). Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone. Journal of Geophysical Research.  https://doi.org/10.1029/2004JB003018.Google Scholar
  68. Suarez, G., & Albini, P. (2009). Evidence for great tsunamigenic earthquakes (M 8.6) along the Mexican subduction zone. Bulletin of Seismological Society of America, 99, 892–896.CrossRefGoogle Scholar
  69. Suarez, G., & Sánchez, O. (1996). Shallow depth of seismogenic coupling in southern Mexico: Implications for the maximum size of earthquakes in the subduction zone. Physics Earth Planet Interiors, 93, 53–61.CrossRefGoogle Scholar
  70. Suarez, G., Santoyo, M. A., Hjorleifsdottir, V., Iglesias, A., Villafuerte, C., & Cruz-Atienza, V. M. (2019). Large scale litospheric detachment of the downgoing Cocos plate: The 8 September 2017 earthquake (Mw 8.2). Earth and Planetary Science Letters.  https://doi.org/10.1016/j.epsl.2018.12.018.Google Scholar
  71. Velasco, A. A., Karplus, M. S., Dena, O., Gonzalez-Huizar, H., Husker, A. L., Perez-Campos, X., et al. (2017). Rapid seismic deployment for capturing aftershocks of the September 2017 Tehuantepec, Mexico (M = 8.1) and Morelos-Puebla (M = 7.1), Mexico earthquakes. American Geophysical Union, Fall Meeting 2017, Abstract.Google Scholar
  72. Wang, K., Gao, X., & Rogers, G. C. (2017). Thermal, petrologic, and structural conditions for the September 2017 M = 8.2 and M = 7.1 intra-slab earthquakes in Mexico. American Geophysical Union, Fall Meeting 2017, Abstract #S32D-08, Bibliographic Code: 2017AGUFM.S32D.08W.Google Scholar
  73. Wei, S., Zeng, H., Wang, X., Qiu, Q., Wang, T., Li, L., et al. (2017). The 2017 Mw 8.2 Tres Picos, Mexico earthquake, an intraslab rupture crossing the Tehuantepec Fracture Zone stopped by a tear in the Cocos Plate. American Geophysical Union, Fall Meeting 2017, Abstract #S33G-2938, Bibliographic Code: 2017AGUFM.S33G2938W.Google Scholar
  74. Ye, L., Lay, T., Cheung, K. F., & Kanamori, H. (2017). The 2017 Mw 8.2 Chiapas, Mexico, earthquake: Energetic slab detachment. Geophysical Research Letters.  https://doi.org/10.1002/2017GL076085.Google Scholar
  75. Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Ouchi, T., Takahashi, T., et al. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of Seismological Society of America, 96(3), 898–913.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Investigación Científica y de Educación Superior de EnsenadaLa PazMexico
  2. 2.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.CONACYT - Centro de Investigación Científica y de Educación Superior de EnsenadaLa PazMexico

Personalised recommendations