Advertisement

Magnetic Field and Electron Density Anomalies from Swarm Satellites Preceding the Major Earthquakes of the 2016–2017 Amatrice-Norcia (Central Italy) Seismic Sequence

  • Dedalo MarchettiEmail author
  • Angelo De Santis
  • Serena D’Arcangelo
  • Federica Poggio
  • Shuanggen Jin
  • Alessandro Piscini
  • Saioa A. Campuzano
Article

Abstract

A systematic inspection of the magnetic field and electron density, recorded by Swarm three-satellite constellation over the seismic region hit by the 2016–2017 Amatrice-Norcia (Central Italy) seismic sequence, has allowed us to identify some possible precursory anomalies, when disturbed periods of the geomagnetic conditions are properly taken into account and/or avoided. This paper aims at studying and interpreting the electromagnetic phenomena occurred before and during the 2016–2017 Amatrice-Norcia (Central Italy) seismic sequence, in order to look for any possible evidence of precursory anomalies. Results show magnetic field and electron density anomalies of four tracks that precede the major earthquakes of the seismic sequence. After an inspection of the geomagnetic conditions, a Swarm Charlie track, acquired on 20/08/2016 that precedes by 3.2 days the beginning of the whole seismic sequence, remains unexplainable with the normal geomagnetic disturbance phenomena of the Earth’s magnetic field. Furthermore, we carry out a blind study of possible relationship between abnormal magnetic field signals detected by Swarm satellites during geomagnetic quiet conditions and major seismic events from about 4 months before the start of the seismic sequence until about the first 8 months from the seismic sequence (i.e. a total of one year of analysed data). We find a very interesting increase of such anomalies starting about 40 days before the beginning of the seismic sequence. It coincides and follows surface and atmospheric alterations, resulting in a temporal sequence of anomalies from Earth’s surface up to ionosphere, supporting the possibility of lithosphere–atmosphere–ionosphere coupling models.

Keywords

Seismo-magnetic precursors LAIC Swarm satellites earthquakes 

Notes

Acknowledgements

This work was undertaken in the framework of the European Space Agency (ESA)-funded project SAFE (Swarm for Earthquake study) and Agenzia Italiana Spaziale (ASI) founded project LIMADOU-Science. The authors thank prof. F. Javier Pavón-Carrasco for the significant contribution to the development of Swarm data analysis software and the seismologist Dr. Rita Di Giovambattista for her very important suggestions provided during the preparation of the work. The Editor and an anonymous referee are greatly thanked for their important comments that helped us very much in improving the quality of the paper.

References

  1. Akhoondzadeh, M., De Santis, A., Marchetti, D., Piscini, A., & Cianchini, G. (2018). Multi precursors analysis associated with the powerful Ecuador (MW = 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data. Advances in Space Research, 61(1), 248–263.CrossRefGoogle Scholar
  2. De Santis, A., Balasis, G., Pavón-Carrasco, F. J., Cianchini, G., & Mandea, M. (2017). Potential earthquake precursory pattern from space: The 2015 Nepal event as seen by magnetic Swarm satellites. Earth and Planetary Science Letters, 461, 119–126.CrossRefGoogle Scholar
  3. De Santis, A., De Franceschi, G., Spogli, L., Perrone, L., Alfonsi, L., Qamili, E., et al. (2015). Geospace perturbations induced by the Earth: The state of the art and future trends. Physics and Chemistry of the Earth.  https://doi.org/10.1016/j.pce.2015.05.004.Google Scholar
  4. Di Luccio, F., Ventura, G., Di Giovambattista, R., Piscini, A., & Cinti, F. R. (2010). Normal faults and thrusts reactivated by deep fluids: The 6 April 2009 Mw6.3 L’Aquila earthquake, central Italy. Journal of Geophysical Research, 115, B06315.CrossRefGoogle Scholar
  5. Dobrovolsky, I. P., Zubkov, S. I., & Miachkin, V. I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117, 1025.CrossRefGoogle Scholar
  6. Donner, R. V., Potirakis, S. M., Balasis, G., Eftaxias, K., & Kurths, J. (2015). Temporal correlation patterns in pre-seismic electromagnetic emissions reveal distinct complexity profiles prior to major earthquakes. Physics and Chemistry of the Earth.  https://doi.org/10.1016/j.pce.2015.03.008.Google Scholar
  7. Fraser-Smith, A. C., Bernardi, A., McGill, P. R., Ladd, M. E., Helliwell, R. A., & Villard, O. G., Jr. (1990). Low-frequency magnetic field measurements near the behaviour of the Ms 7.1 Loma Prieta Earthquake. Geophysical Research Letters, 17(9), 1465–1468.CrossRefGoogle Scholar
  8. Freund, F. (2011). Pre-earthquake signals: Underlying physical processes. Journal of Asian Earth Sciences, 41, 383–400.CrossRefGoogle Scholar
  9. Freund, F. (2013). Earthquake forewarning—A multidisciplinary challenge from the ground up to space. Acta Geophysica, 61(4), 775–807.CrossRefGoogle Scholar
  10. Freund, F. T., Takeuchi, A., Lau, B. W. S., Al-Manaseer, A., Fu, C. C., Bryant, N. A., et al. (2007). Stimulated infrared emission from rocks: assessing a stress indicator. eEarth, 2, 1–10.CrossRefGoogle Scholar
  11. Friis-Christensen, E., Lühr, H., & Hulot, G. (2006). Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space, 58, 351–358.CrossRefGoogle Scholar
  12. Grayver, A. V., Schnepf, N. R., Kuvshinov, A. V., Sabaka, T. J., Manoj, C., & Olsen, N. (2016). Satellite tidal magnetic signals constrain oceanic lithosphere–asthenosphere boundary. Science Advances.  https://doi.org/10.1126/sciadv.1600798.Google Scholar
  13. Hattori, K. (2004). ULF geomagnetic changes associated with large earthquakes. Terrestrial Atmospheric and Oceanic Sciences, 15(3), 329–360.CrossRefGoogle Scholar
  14. Hayakawa, M. (2015). Earthquake prediction with radio techniques. Singapore: J. Wiley & Sons.CrossRefGoogle Scholar
  15. Ho, Y.-Y., Jhuang, H.-K., Lee, L.-C., & Liu, J.-Y. (2018). Ionospheric density and velocity anomalies before M ≥ 6.5 earthquakes observed by DEMETER satellite. Journal of Asian Earth Sciences, 166, 210–222.CrossRefGoogle Scholar
  16. Irrgang, C., Saynisch, J., & Thomas, M. (2017). Utilizing oceanic electromagnetic induction to constrain an ocean general circulation model: A data assimilation twin experiment. Journal of Advances in Modeling Earth Systems, 9, 1703–1720.CrossRefGoogle Scholar
  17. Kikuchi, T., Lühr, H., Schlegel, K., Tachihara, H., Shinohara, M., & Kitamura, T.-I. (2000). Penetration of auroral electric fields to the equator during a substorm. Journal of Geophysical Research, 105(A10), 23251–23261.CrossRefGoogle Scholar
  18. Knudsen, D. J., Burchill, J. K., Buchert, S. C., Eriksson, A. I., Gill, R., Wahlund, J.-E., et al. (2017). Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. Journal of Geophysical Research: Space Physics, 122, 2655–2673.Google Scholar
  19. Kuo, C. L., Huba, J. D., Joyce, G., & Lee, L. C. (2011). Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. Journal of Geophysical Research, 116, A10317.CrossRefGoogle Scholar
  20. Kuo, C. L., Lee, L. C., & Huba, J. D. (2014). An improved coupling model for the lithosphere–atmosphere–ionosphere system. Journal of Geophysical Research: Space Physics, 119, 3189–3205.Google Scholar
  21. Léger, J.-M., Jager, T., Bertrand, F., Hulot, G., Brocco, L., Vigneron, P., et al. (2015). In-flight performance of the absolute scalar magnetometer vector mode on board the Swarm satellites. Earth, Planets and Space.  https://doi.org/10.1186/s40623-015-0231-1.Google Scholar
  22. Li, M., & Parrot, M. (2013). Statistical analysis of an ionospheric parameter as a base for earthquake prediction. Journal of Geophysical Research: Space Physics, 118(6), 3731–3739.Google Scholar
  23. Lück, C., Kusche, J., Rietbroek, R., & Löcher, A. (2018). Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits. Solid Earth, 9, 323–339.CrossRefGoogle Scholar
  24. Marchetti, D., & Akhoondzadeh, M. (2018). Analysis of Swarm satellites data showing seismo-ionospheric anomalies around the time of the strong Mexico (Mw = 8.2) earthquake of 08 September 2017. Advances in Space Research.  https://doi.org/10.1016/j.asr.2018.04.043.Google Scholar
  25. Molchanov, O. A., Kopytenko, Yu A, Voronov, P. M., Kopytenko, E. A., Matiashvili, T. G., Fraser-Smith, A. C., et al. (1992). Results of ULF magnetic field measurements near the epicenters of the Spitak (Ms = 6.9) and Loma Prieta (Ms = 7.1) earthquakes: Comparative analysis. Geophysical Research Letters, 19(14), 1495–1498.CrossRefGoogle Scholar
  26. Olsen, N., Friis-Christensen, E., Floberghagen, R., et al. (2013). The Swarm satellite constellation application and research facility (SCARF) and Swarm data products. Earth Planet Space.  https://doi.org/10.5047/eps.2013.07.001.Google Scholar
  27. Olsen, N., Hulot, G., & Sabaka, T. J. (2010). Measuring the Earth’s magnetic field from space: Concepts of past, present and future missions. Space Science Reviews, 155, 65–93.CrossRefGoogle Scholar
  28. Olsen, N., Ravat, D., Finlay, C. C., & Kother, L. K. (2017). LCS-1: A high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations. Geophysical Journal International, 211(3), 1461–1477.CrossRefGoogle Scholar
  29. Pinheiro, K. J., Jackson, A., & Finlay, C. C. (2011). Measurements and uncertainties of the occurrence time of the 1969, 1978, 1991, and 1999 geomagnetic jerks. Geochemistry, Geophysics, Geosystems, 12, Q10015.CrossRefGoogle Scholar
  30. Piscini, A., De Santis, A., Marchetti, D., & Cianchini, G. (2017). A multi-parametric climatological approach to study the 2016 Amatrice-Norcia (Central Italy) earthquake preparatory phase. Pure and Applied Geophysics, 174(10), 3673–3688.CrossRefGoogle Scholar
  31. Pulinets, S., & Boyarchuk, K. (2004). Ionospheric precursors of earthquakes. New York: Springer.Google Scholar
  32. Pulinets, S., & Ouzounov, D. (2011). Lithosphere–atmosphere–ionosphere coupling (LAIC) model—An unified concept for earthquake precursors validation. Journal of Asian Earth Sciences, 41(4–5), 371–382.CrossRefGoogle Scholar
  33. Ritter, P., Lühr, H., & Rauberg, J. (2013). Determining field-aligned currents with the Swarm constellation mission. Earth, Planets and Space.  https://doi.org/10.5047/eps.2013.09.006.Google Scholar
  34. Thébault, E., et al. (2015). International geomagnetic reference field: The 12th generation. Earth Planets Space.  https://doi.org/10.1186/s40623-015-0228-9.Google Scholar
  35. Tinti, E., Scognamiglio, L., Michelini, A., & Cocco, M. (2016). Slip heterogeneity and directivity of the ML 6.0, 2016, Amatrice earthquake estimated with rapid finite-fault inversion. Geophysical Research Letters.  https://doi.org/10.1002/2016GL071263.Google Scholar
  36. Wen, S., Chen, C.-H., Yen, H.-Y., Yeh, T.-K., Liu, J.-Y., Hattori, K., et al. (2012). Magnetic storm free ULF analysis in relation with earthquakes in Taiwan. Natural Hazards and Earth System Sciences, 12, 1747–1754.CrossRefGoogle Scholar
  37. Yan, R., Parrot, M., & Pinçon, J.-L. (2017). Statistical study on variations of the ionospheric ion density observed by DEMETER and related to seismic activities. Journal of Geophysical Research: Space Physics.  https://doi.org/10.1002/2017JA024623.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Remote Sensing and Geomatics EngineeringNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly
  3. 3.Facultad FísicaUniv. Complutense de MadridMadridSpain
  4. 4.Università Gabriele D’AnnunzioChietiItaly

Personalised recommendations