Advertisement

Interseismic Coupling in the Central Nepalese Himalaya: Spatial Correlation with the 2015 Mw 7.9 Gorkha Earthquake

  • Shuiping LiEmail author
  • Qi Wang
  • Gang ChenEmail author
  • Ping He
  • Kaihua Ding
  • Yunguo Chen
  • Rong Zou
Article
  • 30 Downloads

Abstract

Geodetic measurements conducted in the Himalaya over the last two decades have shown that the shallow portion of the main himalayan thrust (MHT) was entirely locked during the interseismic period. The induced elastic strain accumulated on the MHT beneath the Lesser Himalaya was not released until the 2015 Gorkha Mw 7.9 earthquake, which ruptured the north edge of the locked portion of the MHT. We utilized our own Global Positioning System (GPS) data from southern Tibet, combined with published geodetic velocities, to quantify the spatial variations of the coupling that prevailed before the Gorkha earthquake. The refined coupling model shows that the MHT was strongly locked (coupling > 0.5) in the uppermost 15 km of crust, corresponding to a downdip width of ~ 100 km. This model suggests a sharp transition zone of strain accumulation, with a rapid decrease in the coupling coefficient from 1.0 to less than 0.2 along ~ 50 km of the MHT, coinciding with the locations of microseismicity. We also determined slip models for the 2015 Gorkha earthquake and its Mw 7.3 aftershock, considering the ramp–flat–ramp–flat structure of the MHT. We found that ~ 85% of the total moment released by the Gorkha earthquake was concentrated on the partially coupled transition portion of the MHT, indicating that the earthquake mainly ruptured the brittle/ductile transition zone. The coseismic Coulomb failure stress increased along the southern and western parts adjacent to the rupture zone, pushing these two regions closer to failure. The moment deficits that have accumulated in these regions could trigger Mw 8.0 and Mw 8.3 earthquakes, respectively.

Keywords

GPS convergence rate interseismic coupling 2015 Gorkha earthquake brittle/ductile transition zone 

Notes

Acknowledgements

We acknowledge the Crustal Movement Observation Network of China (CMONOC) for providing us with the GPS data in southern Tibet. We thank the editor Carla F. Braitenberg and two anonymous reviewers for their constructive and helpful comments, which greatly helped in improving our manuscript. This work is supported by the National Natural Science Foundation of China (41674015, 41731071, 41574012, 41674017, 41274037, 41541030), China postdoctoral science foundation (2016M592408), the Fundamental Research Funds for National Universities (CUG160225), Hubei Subsurface Multi-scale Imaging Key Laboratory (SMIL-2017-02) in China University of Geosciences, Wuhan, and Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University (16-01-06). The figures are plotted using the Generic Mapping Tool (GMT) software.

Supplementary material

24_2019_2121_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1737 kb)

References

  1. Ader, T., Avouac, J.-P., Liu-Zeng, J., Lyon-Caen, H., Bollinger, L., Galetzka, J., et al. (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal of Geophysical Research, 117(B4), B04403.  https://doi.org/10.1029/2011jb009071.Google Scholar
  2. Ambraseys, N. N., & Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159, 165–206.Google Scholar
  3. Arora, B. R., Bansal, B. K., Prajapati, S. K., Sutar, A. K., & Nayak, S. (2017). Seismotectonics and seismogenesis of Mw7.8 Gorkha earthquake and its aftershocks. Journal of Asian Earth Sciences, 133, 2–11.Google Scholar
  4. Avouac, J. P. (2003). Mountain building, erosion, and the seismic cycle in the Nepal Himalaya. Advances in Geophysics, 46(03), 1–80.Google Scholar
  5. Avouac, J. P., Meng, L., Wei, S., Wang, T., & Ampuero, J.-P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience, 8(9), 708–711.  https://doi.org/10.1038/ngeo2518.Google Scholar
  6. Bai, L., Liu, H., Ritsema, J., Mori, J., Zhang, T., Ishikawa, Y., et al. (2016). Faulting structure above the Main Himalayan Thrust as shown by relocated aftershocks of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. Geophysical Research Letters, 43(2), 637–642.Google Scholar
  7. Banerjee, P., Bürgmann, R., Nagarajan, B., & Apel, E. (2008). Intraplate deformation of the Indian subcontinent. Geophysical Research Letters, 35(18), 7–12.Google Scholar
  8. Bettinelli, P., Avouac, J. P., Flouzat, M., Jouanne, F., Bollinger, L., Willis, P., et al. (2006). Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. Journal of Geodesy, 80(8), 567–589.  https://doi.org/10.1007/s00190-006-0030-3.Google Scholar
  9. Bilham, R. (1995). Location and magnitude of the 1833 Nepal earthquake and its relation to the rupture zones of contiguous great Himalayan earthquakes. Current Science, 69(2), 155–187.Google Scholar
  10. Bilham, R., & Ambraseys, N. (2005). Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000. Current Science, 88(10), 1658–1663.Google Scholar
  11. Bilham, R., Larson, K., & Freymueller, J. (1997). GPS measurements of present-day convergence across the Nepal Himalaya. Nature, 386(6620), 61–64.Google Scholar
  12. Bilham, R., Mencin, D., Bendick, R., & Bürgmann, R. (2017). Implications for elastic energy storage in the Himalaya from the Gorkha 2015 earthquake and other incomplete ruptures of the Main Himalayan Thrust. Quaternary International, 462, 3–21.Google Scholar
  13. Bollinger, L., Avouac, J. P., Cattin, R., & Pandey, M. R. (2004). Stress buildup in the Himalaya. Journal of Geophysical Research: Atmospheres, 109(B11), 179–204.Google Scholar
  14. Cattin, R., & Avouac, J. P. (2000). Modeling mountain building and the seismic cycle in the Himalaya Nepal. Journal of Geophysical Research: Solid Earth, 105(B6), 13389–13407.Google Scholar
  15. Cheloni, D., D’Agostino, N., & Selvaggi, G. (2014). Interseismic coupling, seismic potential and earthquake recurrence on the southern front of the Eastern Alps (NE Italy). Journal of Geophysical Research, 119(5), 4448–4468.Google Scholar
  16. Chen, W. P., & Molnar, P. (1977). Seismic moments of major earthquakes and the average rate of slip in central Asia. Journal of Geophysical Research: Atmospheres, 82(20), 2945–2970.Google Scholar
  17. Chlieh, M., Perfettini, H., Tavera, H., Avouac, J. P., Remy, D., Nocquet, J. M., et al. (2011). Interseismic coupling and seismic potential along the Central Andes subduction zone. Journal of Geophysical Research: Solid Earth, 116(B12), 12405.Google Scholar
  18. Duputel, Z., Vergne, J., Rivera, L., Wittlinger, G., Farra, V., & Hetényi, G. (2016). The 2015 Gorkha earthquake: A large event illuminating the Main Himalayan Thrust fault. Geophysical Research Letters, 43(6), 2517–2525.  https://doi.org/10.1002/2016gl068083.Google Scholar
  19. Elliott, J. R., Jolivet, R., González, P. J., Avouac, J. P., Hollingsworth, J., Searle, M. P., et al. (2016). Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nature Geoscience, 9(2), 174–180.  https://doi.org/10.1038/ngeo2623.Google Scholar
  20. Feldl, N., & Bilham, R. (2006). Great Himalayan earthquakes and the Tibetan plateau. Nature, 444(7116), 165–170.Google Scholar
  21. Freund, L. B., & Barnett, D. M. (1976). A two-dimensional analysis of surface deformation due to dip-slip faulting. Bulletin of the Seismological Society of America, 66(3), 667–675.Google Scholar
  22. Fu, Y., & Freymueller, J. T. (2012). Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. Journal of Geophysical Research: Solid Earth, 117, B03407.  https://doi.org/10.1029/2011JB008925.Google Scholar
  23. Galetzka, J., Melgar, D., Genrich, J. F., Geng, J., Owen, S., Lindsey, E. O., et al. (2015). Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake. Nepal. Science, 349(6252), 1091–1095.  https://doi.org/10.1126/science.aac6383.Google Scholar
  24. Grandin, R., Doin, M.-P., Bollinger, L., Pinel-Puysségur, B., Ducret, G., Jolivet, R., et al. (2012). Long-term growth of the Himalaya inferred from interseismic InSAR  measurement. Geology, 40(12), 1059–1062.  https://doi.org/10.1130/g33154.1.Google Scholar
  25. Grandin, R., Vallée, M., Satriano, C., Lacassin, R., Klinger, Y., Simoes, M., et al. (2015). Rupture process of the Mw = 7.9 2015 Gorkha earthquake (Nepal): Insights into Himalayan megathrust segmentation. Geophysical Research Letters, 42(20), 8373–8382.Google Scholar
  26. Gualandi, A., Avouac, J.-P., Galetzka, J., Genrich, J. F., Blewitt, G., Adhikari, L. B., et al. (2017). Pre- and post-seismic deformation related to the 2015, Mw 7.8 Gorkha earthquake. Nepal. Tectonophysics, 714–715, 90–106.Google Scholar
  27. He, P., Wang, Q., Ding, K., Wang, M., Qiao, X., Li, J., et al. (2016). Source model of the 2015 Mw 6.4 Pishan earthquake constrained by interferometric synthetic aperture radar and GPS: Insight into blind rupture in the western Kunlun Shan. Geophysical Research Letters, 43(4), 1511–1519.Google Scholar
  28. Hyndman, R. D. (2013). Downdip landward limit of Cascadia great earthquake rupture. Journal of Geophysical Research: Solid Earth, 118(10), 5530–5549.Google Scholar
  29. Jackson, M., & Bilham, R. (1994). Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet. Journal of Geophysical Research: Solid Earth, 99(B7), 13897–13912.  https://doi.org/10.1029/94JB00714.Google Scholar
  30. Jouanne, F., Mugnier, J. L., Gamond, J. F., Fort, P. L., Pandey, M. R., Bollinger, L., et al. (2004). Current shortening across the Himalayas of Nepal. Geophysical Journal International, 157(1), 1–14.  https://doi.org/10.1111/j.1365-246X.2004.02180.x.Google Scholar
  31. Jouanne, F., Mugnier, J. L., Sapkota, S. N., Bascou, P., & Pecher, A. (2017). Estimation of coupling along the Main Himalayan Thrust in the central Himalaya. Journal of Asian Earth Sciences, 133, 62–71.Google Scholar
  32. Kumar, S., Wesnousky, S. G., Jayangondaperumal, R., Nakata, T., Kumahara, Y., & Singh, V. (2010). Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: Timing, size, and spatial extent of great earthquakes. Journal of Geophysical Research: Solid Earth, 115, B12422.  https://doi.org/10.1029/2009JB006789.Google Scholar
  33. Lavé, J., & Avouac, J. P. (2000). Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research: Solid Earth, 105(B3), 5735–5770.Google Scholar
  34. Lavé, J., & Avouac, J. P. (2001). Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research: Solid Earth, 106(B11), 26561–26591.Google Scholar
  35. Lawson, C. L., & Hanson, R. J. (1974). Solving least squares problems. Prentice-Hall, 77(1), 673–682.Google Scholar
  36. Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., et al. (2012). Depth-varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research: Solid Earth, 117, B04311.  https://doi.org/10.1029/2011JB009133.Google Scholar
  37. Liang, S., Gan, W., Shen, C., Xiao, G., Liu, J., Chen, W., et al. (2013). Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. Journal of Geophysical Research: Solid Earth, 118(10), 5722–5732.Google Scholar
  38. Lorenzo-Martín, F., Roth, F., & Wang, R. (2006). Inversion for rheological parameters from post-seismic surface deformation associated with the 1960 Valdivia earthquake, Chile. Geophysical Journal International, 164(1), 75–87.Google Scholar
  39. Maerten, F. (2005). Inverting for slip on three-dimensional fault surfaces using angular dislocations. Bulletin of the Seismological Society of America, 95(5), 1654–1665.Google Scholar
  40. McNamara, D. E., Yeck, W. L., Barnhart, W. D., Schulte-Pelkum, V., Bergman, E., Adhikari, L. B., et al. (2017). Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards. Tectonophysics, 714–715, 21–30.  https://doi.org/10.1016/j.tecto.2016.08.004.Google Scholar
  41. Meade, B. J. (2007). Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space. Computers & Geosciences, 33(8), 1064–1075.Google Scholar
  42. Mencin, D., Bendick, R., Upreti, B. N., Adhikari, D. P., Gajurel, Ananta P., Bhattarai, R. R., et al. (2016). Himalayan strain reservoir inferred from limited afterslip following the Gorkha earthquake. Nature Geoscience, 9, 533–537.  https://doi.org/10.1038/ngeo2734.Google Scholar
  43. Métois, M., Socquet, A., & Vigny, C. (2012). Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. Journal of Geophysical Research: Solid Earth, 117(B3), B03406.  https://doi.org/10.1029/2011JB008736.Google Scholar
  44. Molnar, P., & Chen, W. P. (1984). S–P wave travel time residuals and lateral inhomogeneity in the mantle beneath Tibet and the Himalaya. Journal of Geophysical Research: Atmospheres, 89(B8), 6911–6917.Google Scholar
  45. Molnar, P., & Tapponnier, P. (1975). Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India–Eurasia collision. Science, 189(4201), 419–426.Google Scholar
  46. Morsut, F., Pivetta, T., Braitenberg, C., & Poretti, G. (2017). Strain Accumulation and Release of the Gorkha, Nepal, Earthquake (Mw 7.8, 25 April 2015). Pure and Applied Geophysics, 175(5), 1909–1923.Google Scholar
  47. Mugnier, J. L., Gajurel, A., Huyghe, P., Jayangondaperumal, R., Jouanne, F., & Upreti, B. (2013). Structural interpretation of the great earthquakes of the last millennium in the central Himalaya. Earth-Science Reviews, 127(1), 30–47.Google Scholar
  48. Mugnier, J. L., Huyghe, P., Gajurel, A. P., Upreti, B. N., & Jouanne, F. (2011). Seismites in the Kathmandu basin and seismic hazard in central Himalaya. Tectonophysics, 509(1), 33–49.Google Scholar
  49. Mugnier, J. L., Jouanne, F., Bhattarai, R., Cortes-Aranda, J., Gajurel, A., Leturmy, P., et al. (2017). Segmentation of the Himalayan megathrust around the Gorkha earthquake (25 April 2015) in Nepal. Journal of Asian Earth Science, 141, 236–252.  https://doi.org/10.1016/j.jseaes.2017.01.015.Google Scholar
  50. Nábělek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B., Jiang, M., et al. (2009). Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946), 1371–1374.Google Scholar
  51. Pandey, M. R., Tandukar, R. P., Avouac, J. P., Lave, J., & Massot, J. P. (1995). Interseismic strain accumulation on the Himalaya crustal ramp (Nepal). Geophysical Research Letters, 22, 751–754.  https://doi.org/10.1029/94GL02971.Google Scholar
  52. Pollitz, F. F. (2014). Post-earthquake relaxation using a spectral element method: 2.5-D case. Geophysical Journal International, 198(1), 308–326.Google Scholar
  53. Prawirodirdjo, L., Mccaffrey, R., Chadwell, C. D., Bock, Y., & Subarya, C. (2010). Geodetic observations of an earthquake cycle at the Sumatra subduction zone: Role of interseismic strain segmentation. Journal of Geophysical Research: Solid Earth, 115(B3), 153–164.Google Scholar
  54. Sapkota, S. N., Bollinger, L., Klinger, Y., Tapponnier, P., Gaudemer, Y., & Tiwari, D. (2013). Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nature Geoscience, 6(1), 71–76.  https://doi.org/10.1038/ngeo1669.Google Scholar
  55. Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research: Solid Earth, 88(B6), 4984–4996.Google Scholar
  56. Sreejith, K. M., Sunil, P. S., Agrawal, R., Saji, A. P., Ramesh, D. S., & Rajawat, A. S. (2016). Coseismic and early postseismic deformation due to the 25 April 2015, Mw 7.8 Gorkha, Nepal, earthquake from InSAR and GPS measurements. Geophysical Research Letters, 43(7), 3160–3168.Google Scholar
  57. Stevens, V. L., & Avouac, J. P. (2015). Interseismic coupling on the main Himalayan thrust. Geophysical Research Letters, 42(14), 5828–5837.  https://doi.org/10.1002/2015gl064845.Google Scholar
  58. Stevens, V. L., & Avouac, J. P. (2016). Millenary Mw > 9.0 earthquakes required by geodetic strain in the Himalaya. Geophysical Research Letters, 43(3), 1118–1123.Google Scholar
  59. Suwa, Y., Miura, S., Hasegawa, A., Sato, T., & Tachibana, K. (2006). Interplate coupling beneath NE Japan inferred from three-dimensional displacement field. Journal of Geophysical Research: Atmospheres, 111(B4), 258–273.Google Scholar
  60. Szeliga, W., Hough, S., Martin, S., & Bilham, R. (2010). Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bulletin of the Seismological Society of America, 100(2), 570–584.Google Scholar
  61. Tan, K., Zhao, B., Zhang, C. H., Du, R. L., Wang, Q., Huang, Y., et al. (2016). Rupture models of the Nepal Mw 7.9 earthquake and Mw 7.3 aftershock constrained by GPS and InSAR coseismic deformations. Chinese Journal of Geophysics, 59(6), 2080–2093. (in Chinese).Google Scholar
  62. Vergne, J., Cattin, R., & Avouac, J. P. (2001). On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults. Geophysical Journal International, 147(1), 155–162.  https://doi.org/10.1046/j.1365-246X.2001.00524.x.Google Scholar
  63. Vergnolle, M., Pollitz, F., & Calais, E. (2003). Constraints on the viscosity of the continental crust and mantle from GPS measurements and postseismic deformation models in western Mongolia. Journal of Geophysical Research: Solid Earth, 108(B10), 2502.  https://doi.org/10.1029/2002JB002374.Google Scholar
  64. Wang, K., & Fialko, Y. (2018). Observations and modeling of coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal) earthquake. Journal of Geophysical Research: Solid Earth, 123(1), 761–779.Google Scholar
  65. Wang, W., Qiao, X., Yang, S., & Wang, D. (2017). Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophysical Journal International, 208, 1088–1102.Google Scholar
  66. Wang, Q., Zhang, P. Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X., et al. (2001). Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5542), 574–577.Google Scholar
  67. Xiong, W., Tan, K., Qiao, X., Liu, G., Nie, Z., & Yang, S. (2017). Coseismic, postseismic and interseismic coulomb stress evolution along the himalayan main frontal thrust since 1803. Pure and Applied Geophysics, 174(5), 1889–1905.Google Scholar
  68. Xu, C., Ding, K., Cai, J., & Grafarend, E. W. (2009). Methods of determining weight scaling factors for geodetic–geophysical joint inversion. Journal of Geodynamics, 47(1), 39–46.Google Scholar
  69. Yi, L., Xu, C., Zhang, X., Wen, Y., Jiang, G., Li, M., et al. (2017). Joint inversion of GPS, InSAR and teleseismic data sets for the rupture process of the 2015 Gorkha, Nepal, earthquake using a generalized ABIC method. Journal of Asian Earth Sciences, 148, 121–130.Google Scholar
  70. Zhao, B., Bürgmann, R., Wang, D., Tan, K., Du, R., & Zhang, R. (2017). Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the Mw 7.9 Gorkha, Nepal, earthquake. Journal of Geophysical Research: Solid Earth, 122(10), 8376–8401.Google Scholar
  71. Zhao, W., Nelson, K. D., Che, J., Quo, J., Lu, D., Wu, C., et al. (1993). Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366(6455), 557–559.Google Scholar
  72. Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005–5017.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and GeomaticsChina University of GeosciencesWuhanChina
  2. 2.College of Marine Science and TechnologyChina University of GeosciencesWuhanChina
  3. 3.Faculty of Information EngineeringChina University of GeosciencesWuhanChina

Personalised recommendations