Seismic Noise-Based Strategies for Emphasizing Recent Tectonic Activity and Local Site Effects: The Ferrara Arc, Northern Italy, Case Study

  • A. Mantovani
  • N. Abu Zeid
  • S. BignardiEmail author
  • G. Tarabusi
  • G. Santarato
  • R. Caputo


During the seismic crisis of May–June 2012, that strongly affected the central sector of the Ferrara Arc, relevant coseismic effects were observed, such as ground deformations and amplification phenomena due to low quality mechanical characteristics of the shallow subsurface (i.e. few hundreds of meters). This portion of the subsurface is not investigated by neither hydrocarbon explorations (too deep) nor geotechnical surveys (too shallow). Furthermore, direct analysis is not cost effective to carry out over such a wide area. To overcome these limitations, we exploited seismic noise-based strategies, which are not invasive and do not require expensive equipment. We carried out several single-station and array measurements (i.e. ESAC, Re-Mi, and HVSR), across some of the major tectonic structures of the eastern Po Plain, belonging to the most advanced buried sector of the Northern Apennines. Such investigations were performed along two profiles, about 27 km-long and oriented SSW–NNE, i.e. almost perpendicular to the regional trend of the Ferrara Arc structures. Our results clearly document lateral shear wave velocity variations and the occurrence of resonance phenomena between 0.52 and 0.85 Hz. Additionally, based on inversion procedures, we were able to infer the depth of the resonant interface(s) and we associated such interface(s) to the major known stratigraphic discontinuities, thus emphasizing the recent tectonic activity of the blind thrusts affecting this sector of the Ferrara Arc.


Seismotectonics microtremor ESAC HVSR OpenHVSR 



The study has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri—Dipartimento di Protezione Civile (DPC). The findings and conclusions in this article are those of the author(s) and do not necessarily represent DPC official opinion and policies. Additionally, part of the data collection benefited from funding by the Ferrara Province administration and the city of Bondeno administration. We thank the Editor and two anonymous reviewers that contributed to improve a former version of the manuscript.


  1. Abu Zeid, N. (2016). Geophysical characterization of liquefied terrains using the electrical resistivity and induced polarization methods: The case of the Emilia earthquake 2012. In S. D’Amico (Ed.), Earthquakes and their impact on society (pp. 213–232). Berlin: Springer. Scholar
  2. Abu Zeid, N., Bignardi, S., Caputo, R., Santarato, G., & Stefani, M. (2012). Electrical resistivity tomography investigation on co-seismic liquefaction and fracturing at San Carlo, Ferrara Province, Italy. Annals of Geophysics, 55, 713–716. Scholar
  3. Abu Zeid, N., Corradini, E., Bignardi, S., Nizzo, V., & Santarato, G. (2017). The passive seismic technique ‘HVSR’ as a reconnaissance tool for mapping paleo-soils: The case of the Pilastri archaeological site, northern Italy. Archaeological Prospection. Scholar
  4. Abu Zeid, N., Corradini, E., Bignardi, S., & Santarato, G. (2016). Unusual geophysical techniques in archaeology—HVSR and induced polarization, a case history. 22nd Europe Meeting Environment Engineering Geophysics, NSAG-2016.
  5. Abu-Zeid, N., Bignardi, S., Caputo, R., Mantovani, A., Tarabusi, G., & Santarato, G. (2013). Acquisition of V S profiles across the Casaglia anticline (Ferrara Arc). DPC-INGV-S1 Project, Final Report, pp. 42–46.Google Scholar
  6. Abu-Zeid, N., Bignardi, S., Caputo, R., Mantovani, A., Tarabusi, G., & Santarato, G. (2014). Shear-wave velocity profiles across the Ferrara Arc: A contribution for assessing the recent activity of blind tectonic structures. 33th Conference GNGTS, Proceedings, 1, 117–122.Google Scholar
  7. AGIP-MINERARIA. (1959). Campi gassiferi padani. Atti Convegno ‘Giacimenti Gassiferi dell’Europa Occidentale’. Rome: Accademia Nazionale dei Lincei.Google Scholar
  8. Aki, K. (1957). Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bulletin Earth Research Institute, 35, 415–456.Google Scholar
  9. Aki, K. (1964). A note on the use of microseisms in determining the shallow structures of the earth’s crust. Geophysics, 29, 665–666.Google Scholar
  10. Albarello, D., & Castellaro, S. (2011). Tecniche sismiche passive: Indagini a stazione singola. Ingegneria Sismica, XXVIII(2), 32–62.Google Scholar
  11. Albarello, D., Cesi, C., Eulili, V., Guerrini, F., Lunedei, E., Paolucci, E., et al. (2011). The contribution of the ambient vibration prospecting in seismic microzoning: An example from the area damaged by the 26th April 2009 L’Aquila (Italy) earthquake. Bulletin Geof Teor Application, 52(3), 513–538.Google Scholar
  12. Amorosi, A. (2008). Delineating aquifer geometry whitin sequence stratigraphic framework: Evidence from Quarnary of the Po River Basin Northern Italy. GeoActa, Special Publication, 1, 1–14.Google Scholar
  13. Amorosi, A., & Colalongo, M. (2005). The linkage between alluvial and coeval nearshore marine succession: Evidence from the Late Quaternary record of the Po River Plain, Italy. In M. Blum & S. Marriott (Eds.), Fluvial Sedimentology. Oxford: IAS Special Publication.Google Scholar
  14. AQUATER. (1976). Elaborazione dei dati geofisici relativi alla Dorsale Ferrarese. Rapporto inedito per ENEL.Google Scholar
  15. AQUATER. (1978). Interpretazione dei dati geofisici delle strutture plioceniche e Quaternarie della Pianura Padana e Veneta. Rapporto inedito per ENEL.Google Scholar
  16. AQUATER. (1980). Studio del nannoplancton calcareo per la datazione della scomparsa della Hyalinea baltica nella Pianura Padana e Veneta. Rapporto inedito per ENEL.Google Scholar
  17. AQUATER-ENEL. (1981). Elementi di neotettonica del territorio italiano. Volume speciale, Roma.Google Scholar
  18. Argnani, A., Barbacini, G., Bernini, M., Camurri, F., Ghielmi, M., Papani, G., et al. (2003). Gravity tectonics driven by Quaternary uplift in the Northern Apennines: Insights from the La Spezia-Reggio Emilia Geo-Transect. Quaternary International, 101(102), 13–26.CrossRefGoogle Scholar
  19. Argnani, A., & Frugoni, F. (1997). Foreland deformation in the Central Adriatic and its bearing on the evolution of the Northern Apennines. Annales Geophysicae, 40(3), 77–780.Google Scholar
  20. Asten, M. W. (1978). Geological control of the three-component spectra of Rayleigh-wave microseisms. Bulletin of the Seismological Society of America, 68(6), 1623–1636.Google Scholar
  21. Asten, M. W., & Henstridge, J. D. (1984). Arrays estimators and the use of microseisms for reconnaissance of sedimentary basins. Geophysics, 49(11), 1828–1837.CrossRefGoogle Scholar
  22. Bard, P.-Y. (1999). Microtremor measurements: A tool for site estimation? State-of-the-art paper. In Okada & Sasatani (Eds) 2nd International Symposium Effects of Surface Geology on seismic motion, Yokohama, December 1–3, 1998, Irikura, Kudo, Balkema 1999 (vol. 3, pp. 1251–1279).Google Scholar
  23. Bertotti, G., Capozzi, R., & Picotti, V. (1998). Extension controls Quaternary tectonics, geomorphology and sedimentation of the N-Apennines foothills and adjacent Po Plain (Italy). Tectonophys., 282, 291–301.CrossRefGoogle Scholar
  24. Bigi G., Bonardini G., Catalano R., Cosentino D., Lentini F., Parlotto M. Sartori R., Scandone P. & Turco E. (1992): Structural model of Italy, 1:500,000. Consiglio Nazionale delle Ricerche, Rome.Google Scholar
  25. Bignardi, S. (2017). The uncertainty of estimating the thickness of soft sediments with the HVSR method: A computational point of view on weak lateral variations. Journal of Applied Geophysics, 145C, 28–38. Scholar
  26. Bignardi, S., Fedele, F., Santarato, G., Yezzi, A., & Rix, G. (2013). Surface waves in laterally heterogeneous media. Journal of Engineering Mechanics, 139(9), 1158–1165. Scholar
  27. Bignardi, S., Fiussello, S., & Yezzi, A.J. (2018b), Free and improved computer codes for hvsr processing and inversions. In 31st SAGEEP, Nashville, TN, USA March 25–29, 2018, Proceedings.Google Scholar
  28. Bignardi, S., Mantovani, A., & Abu, Zeid N. (2016). OpenHVSR: Imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion. Computers and Geosciences, 93, 103–113. Scholar
  29. Bignardi, S., Santarato, G., & Abu Zeid, N. (2014). Thickness variations in layered subsurface models—Effects on simulated MASW. In 76th EAGE conference & exhibition, Ext. abstract, WS6P04.
  30. Bignardi, S., Yezzi, A. J., Fiussello, S., & Comelli, A. (2018a). OpenHVSR—Processing toolkit: Enhanced HVSR processing of distributed microtremor measurements and spatial variation of their informative content. Computers and Geosciences, 120, 10–20. Scholar
  31. Boatwright, J., Fletcher, J., & Fumal, T. (1991). A general inversion scheme for source, site and propagation characteristics using multiply recorded sets of moderate-sized earthquakes. Bulletin of the Seismological Society of America, 81, 1754–1782.Google Scholar
  32. Boccaletti, M., Bonini, M., Corti, G., Gasperini, P., Martelli, L., Piccardi, L., Tanini, C., & Vannucci G. (2004). Seismotectonic Map of the Emilia-Romagna Region, 1:250000. Regione Emilia-Romagna—CNR.Google Scholar
  33. Boccaletti, M., Corti, G., & Martelli, L. (2011). Recent and active tectonics of the external zone of the Northern Apennines (Italy). International Journal of Earth Sciences, 100, 1331–1348.CrossRefGoogle Scholar
  34. Bonnefoy-Claudet, S., Cornou, C., Bard, P., Cotton, F., Moczo, P., Kristek, J., et al. (2006). H/V ratio: A tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International, 167, 827–837.CrossRefGoogle Scholar
  35. Borcherdt, R.D. (2012). VS30—A site-characterization parameter for use in building codes, simplified earthquake resistant design, GMPEs, and ShakeMaps. In 15th WCEE, Lisbon, 24–28 September 2012.Google Scholar
  36. Borcherdt, R. D., & Glassmoyer, G. (1992). On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta earthquake in the San Francisco Bay region, California. Bulletin of the Seismological Society of America, 82, 603–641.Google Scholar
  37. Bordoni, P., Azzara, R., Cara, F., Cogliano, R., Cultrera, G., Di Giulio, G., et al. (2012). Preliminary results from EMERSITO, a rapid response network for site-effect studies. Annales Geophysicae, 55(4), 599–607.Google Scholar
  38. Briggs, I. C. (1974). Machine contouring using minimum curvature. Geophysics, 39, 39–48.CrossRefGoogle Scholar
  39. Burrato, P., Ciucci, F., & Valensise, G. (2003). An inventory of river anomalies in the Po Plain, northern Italy: Evidence for active blind thrust faulting. Annales Geophysicae, 46(5), 865–882.Google Scholar
  40. Burrato, P., Vannoli, P., Fracassi, U., Basili, R., & Valensise, G. (2012). Is blind faulting truly invisible? Tectonic-controlled drainage evolution in the epicentral area of the May 2012, Emilia-Romagna earthquake sequence (northern Italy). Annales Geophysicae, 55(4), 525–531. Scholar
  41. Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. IEEE, 57, 1408–1419.CrossRefGoogle Scholar
  42. Caputo, R., & Papathanasiou, G. (2012). Ground failure and liquefaction phenomena triggered by the 20 May, 2012 Emilia-Romagna (Northern Italy) earthquake: Case study of Sant’Agostino-San Carlo-Mirabello zone. National Hazards Earth System Sciences, 12(11), 3177–3180. Scholar
  43. Caserta, A., Zahradnik, J., & Plicka, V. (1999). Ground motion modeling with a stochastically perturbed excitation. Journal of Seismology, 3, 45–59.CrossRefGoogle Scholar
  44. Castellarin, A., Eva, C., Giglia, G., Vai, G., Rabbi, E., Pini, G., et al. (1985). Analisi strutturale del Fronte Appenninico Padano. Giornale di Geologia, 47, 47–75.Google Scholar
  45. Costa, M. (2003). The buried, apenninic arcs of the Po Plain and Northern Adriatic Sea (Italy): A new model. Bollettino della Società Geologica Italiana, 122, 3–23.Google Scholar
  46. D’Alessandro, A., Luzio, D., Martorana, R., & Capizzi, P. (2016). Selection of time windows in the horizontal-to-vertical noise spectral ratio by means of cluster analysis. Bulletin of the Seismological Society of America, 106(2), 560–574. Scholar
  47. Di Capua, G., & Tarabusi, G. (2013). Site specific hazard assessment in priority areas. DPC-INGV-S2 Project, Annex 3 to Deliverable 4.1.Google Scholar
  48. EN 1998-5. (2004). Eurocode 8: Design of structures for earthquake resistance—Part 5: Foundations, retaining structures and geotechnical aspects. In CEN European Committee for Standardization, Bruxelles, Belgium.Google Scholar
  49. Foti, S., Comina, C., Boiero, D., & Socco, L. V. (2009). Non-uniqueness in surface wave inversion and consequences on seismic site response analyses. Soil Dynamics and Earthquake Engineering, 29(6), 982–993.CrossRefGoogle Scholar
  50. Gallipoli, M. R., Mucciarelli, M., Eeri, M., Gallicchio, S., Tropeano, M., & Lizza, C. (2004). Horizontal to Vertical Spectral Ratio (HVSR) measurements in the area damaged by the 2002 Molise, Italy earthquake. Earthquake Spectra, 20(1), 81–93. Scholar
  51. Garofalo, F., Foti, S., Hollender, F., Bard, P. Y., Cornou, C., Cox, B. R., et al. (2016a). InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part II: Inter-comparison between surface wave and borehole methods. Soil Dynamic Earthquake Engineering, 82, 241–254. Scholar
  52. Garofalo, F., Foti, S., Hollender, F., Bard, P. Y., Cornou, C., Cox, B. R., et al. (2016b). InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part I: Intra-comparison of surface wave methods. Soil Dynamic Earthquake Engineering, 82, 222–240. Scholar
  53. Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., Sgattoni G., & Valensise G. (2018). CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). Accessed 4 Feb 2019.
  54. Gutenberg, B. (1958). Microseisms. Advances in Geophysics, 5, 53–92.CrossRefGoogle Scholar
  55. Herak, M. (2008). ModelHVSR-a Matlab tool to model horizontal-to-vertical spectral ratio of ambient noise. Computers Geoscience, 35, 1514–1526.CrossRefGoogle Scholar
  56. Herak, M., Allegretti, I., Herak, D., Kuk, K., Kuk, V., Maric, K., et al. (2010). HVSR of ambient noise in Ston (Croatia): Comparison with theoretical spectra and with the damage distribution after the 1996 Ston-Slano earthquake. Bulletin of Earthquake Engineering, 8, 483–499.CrossRefGoogle Scholar
  57. ISPRA. (2009). Carta Geologica d’Italia alla scala 1:50.000, Foglio 203 Poggio Renatico. Coord. Scient.: U. Cibin, Regione Emilia-Romagna. ISPRA, Servizio Geologico d’Italia, Regione Emilia-Romagna, SGSS.Google Scholar
  58. Kanai, K., Osada, T., & Tanaka, T. (1954). Measurement of the microtremors. Bulletin Earthquake Research Institute, University of Tokyo, 32, 199–209.Google Scholar
  59. Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241.Google Scholar
  60. Lai, C. G., Foti, S., Godio, A., Rix, G. J., Sambuelli, L., & Socco, L. V. (2000). Caratterizzazione geotecnica dei terreni mediante l’uso di tecniche geofisiche. Rivista Italiana di Geotecnica, 34(3), 99–118.Google Scholar
  61. Laurenzano, G., Priolo, E., Barnaba, C., Gallipoli, M.R., Klin, P., Mucciarelli, M., & Romanelli, M. (2013), Studio sismologico per la caratterizzazione della risposta sismica di sito ai fini della microzonazione sismica di alcuni comuni della regione Emilia-Romagna—Relazione sulla attività svolta. Rel. OGS 2013/74 Sez. CRS 26, 31 luglio.Google Scholar
  62. Louie, J. N. (2001). Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bulletin of the Seismological Society of America, 91(2), 347–364.CrossRefGoogle Scholar
  63. Lucchi, F. R. (1986). Oligocene to Recent foreland basins of northern Apennines. In P. A. Allen & P. Homewood (Eds.), Foreland basins (Vol. 8, pp. 105–139). Oxford: IAS.Google Scholar
  64. Lunedei, E., & Albarello, D. (2010). Theoretical HVSR curves from full wavefield modelling of ambient vibrations in a weakly dissipative layered Earth. Geophysical Journal International, 181, 1093–1108. Scholar
  65. Lunedei, E., & Albarello, D. (2015). Horizontal-to-vertical spectral ratios from a full-wavefield model of ambient vibrations generated by a distribution of spatially correlated surface sources. Geophysical Journal International, 201(2), 1140–1153. Scholar
  66. Mantovani, A., Valkaniotis, S., Rapti, D., & Caputo, R. (2018). Mapping the palaeo-Piniada Valley, Central Greece, based on systematic microtremor analyses. Pure and Applied Geophysics, 175, 865–881. Scholar
  67. Margheriti, L., Azzara, R., Cocco, M., Delladio, A., & Nardi, A. (2000). Analyses of borehole broadband recordings: Test site in the Po basin, Northern Italy. Bulletin of the Seismological Society of America, 90, 1454–1463.CrossRefGoogle Scholar
  68. Martelli, L., & Romani, M. (2013). Microzonazione Sismica e analisi della Condizione Limite per l’Emergenza delle aree epicentrali dei terremoti della pianura emiliana di maggio-giugno 2012. (Ordinanza del Commissario Delegato—Presidente della Regione Emilia-Romagna n. 70/2012). Relazione illustrativa. Accessed 4 Feb 2019.
  69. Martorana, R., Capizzi, P., D’Alessandro, A., Luzio, D., Di Stefano, P., Renda, P., et al. (2018). Contribution of HVST measures for seismic microzonation studies. Annals of Geophysics, 61(2), 225.CrossRefGoogle Scholar
  70. Masetti, D., Fantoni, R., Romano, R., Sartorio, D., & Trevisani, E. (2012). Tectonostratigraphic evolution of the Jurassic extensional basins of the eastern southern Alps and Adriatic foreland based on an integrated study of surface and subsurface data. American Association Petroleum Geol. Bulletin, 96(11), 2065–2089. Scholar
  71. Massolino, G., Abu Zeid, N., Bignardi, S., Gallipoli, M.R., Stabile, T.A., Rebez, A., & Mucciarelli, M. (2018). Ambient vibration tests on a building before and after the 2012 Emilia (Italy) earthquake, and after seismic retrofitting. 16th ECEE, June 2018, Thessaloniki, Greece. Google Scholar
  72. Matsushima, S., Hirokawa, T., De Martin, F., Kawase, H., & Sánchez-Sesma, F. J. (2014). The effect of lateral heterogeneity on horizontal-to-vertical spectral ratio of microtremors inferred from observation and synthetics. Bulletin of the Seismological Society of America, 104(1), 381–393. Scholar
  73. McMechan, G. A., & Yedlin, M. J. (1981). Analysis of dispersive waves by wave field transformation. Geophysics, 46, 869–874.CrossRefGoogle Scholar
  74. Minarelli, L., Amoroso, S., Tarabusi, G., Stefani, M., & Pulelli, G. (2016). Down-hole geophysical characterization of middle-upper Quaternary sequences in the Apennine Foredeep, Mirabello, Italy. Annals of Geophysics, 59(5), 543. Scholar
  75. Molinari, F., Boldrini, G., Severi, P., Duroni, G., Rapti-Caputo, D., & Martinelli, G. (2007). Risorse idriche sotterranee della Provincia di Ferrara. Regione Emilia-Romagna (DB MAP eds.). Florence, p. 61.Google Scholar
  76. Mucciarelli, M., Di, Gallipoli M. R., Giacomo, D., Di Nota, F., & Nino, E. (2005). The influence of wind on measurements of seismic noise. Geophys. J. Int., 161(2), 303–308. Scholar
  77. Mulargia, F., & Castellaro, S. (2016). HVSR deep mapping tested down to ~ 1.8 km in Po Plane Valley, Italy. Physics Earth Planetenary International, 261, 17–23. Scholar
  78. Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Reports RTRI, 30, 25–33.Google Scholar
  79. Nardon, S., Marzorati, D., Bernasconi, A., Cornini, S., Gonfalini, M., Romano, A., et al. (1991). Fractured carbonate reservoir characterisation and modelling: A multisciplinary case study from the Cavone oil field, Italy. First Break, 9(12), 553–565.Google Scholar
  80. Nogoshi, M., & Igarashi, T. (1970). On the propagation characteristics of microtremors. Journal of Seismological Society Japan, 23, 264–280.Google Scholar
  81. Obradovic, M., Abu, Zeid N., Bignardi, S., Bolognesi, M., Peresani, M., Russo, P., et al. (2015). High resolution geophysical and topographical surveys for the characterization of Fumane Cave Prehistoric Site. Italy: Near Surface Geoscience. Scholar
  82. Ohori, M., Nobata, A., & Wakamatsu, K. (2002). A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays. Bulletin of the Seismological Society of America, 92(6), 2323–2332.CrossRefGoogle Scholar
  83. Okada, H. (1986). A research on long period microtremor array observations and their time and spatial characteristics as probabilistic process. Report of a Grant-in-Aid for Co-operative Research (A) No. 59340026 supported by the Scientific Research Fund in 1985.Google Scholar
  84. Okada, H. (2003), The Microtremor survey method. Geophysics. Monograph Series, SEG, p. 129.Google Scholar
  85. Paolucci, E., Albarello, D., D’Amico, S., Lunidei, E., Martelli, L., Mucciarelli, M., et al. (2015). A large scale ambient vibration survey in the area damaged by May–June 2012 seismic sequence in Emilia Romagna, Italy. Bulletin Earthquake Engineering, 13(11), 3187–3206.CrossRefGoogle Scholar
  86. Patacca, E., & Scandone, P. (1989) Post-Tortonian mountain building in the Apennines. The role of the passive sinking of a relic lithospheric slab. In: Boriani AM. et al. (Eds) The Lithosphere in Italy. Atti dei Convegni Lincei (vol. 80, pp. 157–176).Google Scholar
  87. Papathanassiou, G., Mantovani, A., Tarabusi, G., Rapti, D., & Caputo, R. (2015). Assessment of liquefaction potential for two liquefaction prone area considering the May 20, 2012 Emilia (Italy) earthquake. Engineering Geology, 189, 1–16. Scholar
  88. Park, C., Miller, R., & Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64, 800–808.CrossRefGoogle Scholar
  89. Picotti, V., & Pazzaglia, F. (2008). A new active tectonic model for the construction of the Northern Apennines mountain front near Bologna (Italy). Journal of Geophysics Research, 113, B08412. Google Scholar
  90. Pieri, M., & Groppi, G. (1981), Subsurface geological structure of the Po Plain, Italy. Consiglio Nazionale delle Ricerche, Progetto finalizzato Geodinamica, sottoprogetto Modello Strutturale, pubbl. N° 414, Roma, p. 13.Google Scholar
  91. Pondrelli, S., Salimbeni, S., Perfetti, P., & Danecek, P. (2012). Quick regional centroid moment tensor solutions for the Emilia 2012 (northern Italy) seismic sequence. Annales Geophysicae, 55(4), 615–621. Scholar
  92. Priolo, E., Romanelli, M., Barnaba, C., Mucciarelli, M., Laurenzano, G., DallOlio, L., et al. (2012). The ferrara thrust earthquakes of May–June 2012—Preliminary site response analysis at the sites of the OGS temporary network. Annals of Geophysics, 55(4), 591–597. Scholar
  93. RER and ENI-Agip. (1998). Riserve idriche sotterranee della Regione Emilia-Romagna. In G. M. Di Dio (Ed.), Regione Emilia-Romagna, ufficio geologico—ENI-Agip, Divisione Esplorazione & Produzione (p. 120). Firenze: S.EL.CA.Google Scholar
  94. Rovida, A., Locati, M., Camassi, R., Lolli, B., & Gasperini, P. (Eds.). (2016). CPTI15, the 2015 version of the parametric catalogue of Italian earthquakes. Rome: Istituto Nazionale di Geofisica e Vulcanologia. Scholar
  95. Scherbaum, F., Hinzen, K. G., & Ohrnberger, M. (2003). Determination of shallow shear wave velocity profiles in the Cologne/Germany area using ambient vibrations. Geophysical Journal International, 152, 597–612.CrossRefGoogle Scholar
  96. Scrocca, D., Carminati, E., Doglioni, C., & Marcantoni, D. (2007). Slab retreat and active shortening along the Central-Northern Apennines. In O. Lacombe, J. Lavé, F. Roure, & J. Verges (Eds.), Thrust belts and Foreland Basins: From fold kinematics to hydrocarbon systems. Frontiers in Earth Sciences (pp. 471–487). Berlin: Springer.CrossRefGoogle Scholar
  97. SeisImager. (2009). Windows software for analysis of surface waves. SW™ Manual. California: Geometrics, Inc.Google Scholar
  98. SESAME European project. (2004). Site Effects Assessment using Ambient Excitations; Deliverable D23.12: Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: Measurements, processing and interpretation; deliverable D13.08. Final report WP08, Nature of noise wavefield.Google Scholar
  99. Tarabusi, G., & Caputo, R. (2016). The use of HVSR measurements for investigating buried tectonic structures: The Mirandola anticline, northern Italy, as a case study. International Journal of Earth Sciences, 106, 341–353. Scholar
  100. Team, Geo Mol. (2015). GeoMol—Assessing subsurface potentials of the Alpine Foreland Basins for sustainable planning and use of natural resources—Project Report (p. 188). LfU: Augsburg.Google Scholar
  101. Thorson, J. R., & Claerbout, J. F. (1985). Velocity-stack and slant-stack stochastic inversion. Geophysics, 50, 2727–2741.CrossRefGoogle Scholar
  102. Tsai, N. C., & Housner, G. W. (1970). Calculation of surface motions of a layered half-space. Bulletin of the Seismological Society of America, 60, 1625–1651.Google Scholar
  103. Vannoli, P., Burrato, P., & Valensise, G. (2014). The seismotectonics of the Po Plain (Northern Italy): Tectonic diversity in a blind faulting domain. Pure and Applied Geophysics, 172, 1105–1142. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physics and Earth SciencesFerrara UniversityFerraraItaly
  2. 2.Centro Interuniversitario per la ricerca Sismotettonica, CRUST-UniFEFerraraItaly
  3. 3.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyGeorgiaUSA
  4. 4.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly
  5. 5.Research and Teaching Center for Earthquake GeologyTyrnavosGreece

Personalised recommendations