Magnetotellurics Study to Identify Subsurface Resistivity Structure in the Eastern Part of Kachchh (Little Rann Area) of Gujarat, India

  • Peush Chaudhary
  • Kapil MohanEmail author
  • B. S. Chaudhary


A magnetotelluric (MT) survey has been conducted in the eastern part of the Kachchh region of Gujarat State (crossing Little Rann) starting from Adesar village in the north to Enjar village in the south, where limited geophysical data is available. The profile has been acquired in the N–S direction having a total length of 52 km with the interstation spacing of 3–4 km. From two-dimensional (2D) inversion of the MT data, four conductive zones are identified. The analysis reveals that the depth of the basement varies from 1.2 km (in the south) to 1.8 km (in the north). The first conductive zone is found at a distance of ~ 3 km in the south of Adesar and is identified at the location of the Kanmer fault [KF; the eastern extension of South Wagad fault (SWF)] and might be the KF. The second conductive zone is found at a distance of ~ 42 km in the south of Adesar and ~ 13 km north of Enjar village and is located at the contact zone of Kachchh and Saurashtra peninsula at the location of the North Kathiawar fault (NKF). It is inferred as the NKF. The third conductive zone (at a distance of ~ 27 km in the south of Adesar) is found between the first and second conductor. This is interpreted as a step fault, formed during the rifting process of Kachchh. The lower crust (below 20 km) is found conductive (~ 120 Ω m) and might indicate the presence of fluid-filled mafic/ultramafic rocks in the lower crust.


Magnetotellurics eastern Kachchh north Kathiawar fault Kanmer fault south Wagad fault lower crust conductor 



The authors are thankful to the Director General and Director, ISR for their encouragement and permission to publish this work. Thanks to the Government of Gujarat for providing funds under project no. 3425/60/04 to conduct this research work. The authors are also thankful to the editor and two anonymous reviewers for their constructive comments and helpful suggestions for improving the quality of the work.


  1. Alabi, A. O., Camfield, P. A., & Gough, D. I. (1975). The North America central plains conductivity anomaly. Geophysical Journal International, 43, 815–833.CrossRefGoogle Scholar
  2. Arora, B. R., Rawat, G., & Singh, A. K. (2002). Mid-crustal conductor below the Kutch rift and its seismogenic relevance to the 2001 Bhuj earthquake (pp. 22–24). New Delhi: DCS-DST News Govt. of India.Google Scholar
  3. Bahr, K. (1988). Interpretation of the magnetotelluric impedance tensor: regional induction and local distortion. Journal of Geophysics, 62, 119–127.Google Scholar
  4. Bahr, K. (1991). Geological noise in magnetotelluric data: A classification of distortion types. Physics of the Earth and Planetary Interiors, 66(1–2), 24–38.CrossRefGoogle Scholar
  5. Becken, M., & Burkhardt, H. (2004). An ellipticity criterion in magnetotelluric tensor analysis. Geophysical Journal International, 159(1), 69–82.CrossRefGoogle Scholar
  6. Biswas, S. K. (1987). Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, 135(4), 307–327.CrossRefGoogle Scholar
  7. Biswas, S. K., Bhasin, A. L., & Ram, J. (1994). Classification of sedimentary basins of India in the framework of plate tectonics. Proceedings of the Second Symposium on the Petroliferous basins of India, KDMIPE, Dehradun, vol. 1, pp. 1–42.Google Scholar
  8. Biswas, S. K. (2005). A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes. Current Science, 88(10), 1592–1600.Google Scholar
  9. Biswas, S. K. (2016). Tectonic framework, structure and tectonic evolution of Kutch Basin, Western India. Special Publications Geological Society of India, 6, 129–150. Scholar
  10. Brasse, H., Lezaeta, P., Rath, V., Schwalenberg, K., Soyer, W., & Haak, V. (2002). The Bolivian Altiplano conductivity anomaly. Journal of Geophysical Research, 107(B5), 4–10. Scholar
  11. Chandrasekhar, D. V., & Mishra, D. C. (2002). Some geodynamic aspects of Kachchh basin and seismicity: An insight from gravity studies. Current Science, 83(4), 492–498.Google Scholar
  12. Chopra, S., Chang, T. M., Saikia, S., Yadav, R. B. S., Choudhury, P., & Roy, K. S. (2014). Crustal structure of the Gujarat region, India: New constraints from the analysis of teleseismic receiver functions. Journal of Asian Earth Science, 96, 237–254.CrossRefGoogle Scholar
  13. Cox, K. G. (1993). Continental magmatic underplating. Philosophical Transactions of the Royal Society of London, 342(1663), 155–166.Google Scholar
  14. Duba, A. G., & Shankland, T. J. (1982). Free carbon and electrical conductivity in the Earth’s mantle. Geophysical Research Letters, 9, 1271–1274.CrossRefGoogle Scholar
  15. Ferry, J. M. (1991). Dehydration and decarbonation reactions as a record of fluid infiltration. Reviews in Mineralogy and Geochemistry, 26(1), 351–393.Google Scholar
  16. Frost, B. R., & Bucher, K. (1994). Is water responsible for geophysical anomalies in the deep continental crust? A petrological perspective. Tectonophysics, 231(4), 293–309.CrossRefGoogle Scholar
  17. Frost, B. R., Fyfe, W. S., Tazaki, K., & Chan, T. (1989). Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust. Nature, 340, 134–136.CrossRefGoogle Scholar
  18. Groom, R. W., & Bailey, R. C. (1989). Decomposition of Magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion. Journal of Geophysical Research, 94(B2), 1913–1925.CrossRefGoogle Scholar
  19. Hansen, P. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34, 561–580. Scholar
  20. Hansen, P. C. (1998). Rank deficient and discrete ill: Posed problems, numerical aspects of linear inversion. Philadelphia: SIAM.CrossRefGoogle Scholar
  21. Harinarayana, T., Abdul Azeez, K. K., Murthy, D. N., Veeraswamy, K., Eknath Rao, S. P., Manoj, C., et al. (2006). Exploration of geothermal structure in Puga geothermal field, Ladakh Himalayas, India by magnetotelluric studies. Journal of Applied Geophysics, 58(4), 280–295.CrossRefGoogle Scholar
  22. Hermance, J. F. (1979). The electrical conductivity of materials containing partial melts: A simple model from Archie’s Law. Geophysical Research Letters, 6(7), 613–616.CrossRefGoogle Scholar
  23. Hyndman, R. D., & Hyndman, D. W. (1968). Water saturation and high electrical conductivity in the lower crust. Earth and Planetary Science Letters, 4(6), 427–432.CrossRefGoogle Scholar
  24. Jones, A. G., Groom, R. D., & Kurtz, R. D. (1993). Decomposition and modelling of the BC 87 data set. Journal of Geomagnetism and Geoelectricity, 45(9), 1127–1150.CrossRefGoogle Scholar
  25. Karmalkar, N. R., Kale, M. G., Duraiswamy, R. A., & Zonnalagadda, M. (2008). Magma underplating and storage in the crust building process beneath the Kutch region, NW India. Current Science, 94, 1582–1588.Google Scholar
  26. Kayal, J. R., Zhao, D., Mishra, O. P., De, R., & Singh, O. P. (2002). The 2001 Bhuj earthquake: Tomographic evidence for fluids at the hypocenter and its implications for rupture nucleation. Geophysical Research Letters, 29(24), 51–54.CrossRefGoogle Scholar
  27. Kumar, G. P., Kumar, V., Nagar, M., Singh, D., Mahendar, E., Patel, P., et al. (2017). Magnetotelluric impedance tensor analysis for identification of transverse tectonic feature in the Wagad uplift, Kachchh, northwest India. Journal of Earth System and Science. Scholar
  28. Lebedev, E. B., & Kitarov, N. I. (1964). Dependence of the beginning of melting of granite and the electrical conductivity of its melt on high water vapor pressure. Geochemistry International, 1, 193–197.Google Scholar
  29. Ledo, J., & Jones, A. G. (2004). Lithospheric structure of the Yukon, northern Canadian Cordillera, obtained from magnetotelluric data. Journal of Geophysical Research, 109, B04410. Scholar
  30. Li, S., Unsworth, M. J., Booker, J. R., Wei, W., Tan, H., & Jones, A. G. (2003). Partial melt or aqueous fluid in the midcrust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophysical Journal International, 153, 289–304.CrossRefGoogle Scholar
  31. Lyell, C. (1855). A manual of elementary geology. London: John Murray.CrossRefGoogle Scholar
  32. Mandal, P., & Pujol, J. (2006). Seismic imaging of the aftershock zone of the 2001 Mw 7.7 Bhuj earthquake, India. Geophysical Research Letters, 33(5), 5–10. Scholar
  33. Mandal, P., Rastogi, B. K., Satyanarayana, H. V. S., & Kousalya, M. (2004). Results from local earthquake velocity tomography: Implications toward the source process involved in generating the 2001 Bhuj earthquake in the lower crust beneath Kachchh (India). Bulletin of Seismological Society of America, 94(2), 633–649.CrossRefGoogle Scholar
  34. McNeice, G. W., & Jones, A. G. (2001). Multisite, multi frequency tensor decomposition of magnetotelluric data. Geophysics, 66(1), 158–173. Scholar
  35. Merh, S. S. (1995). Geology of Gujarat (pp. 156–161). Bangalore: Geological Society of India.Google Scholar
  36. Mishra, D. C., Chandrasekhar, D. V., & Singh, B. (2005). Tectonics and crustal structures related to Bhuj earthquake of January 26, 2001: Based on gravity and magnetic surveys constrained from seismic and seismological studies. Tectonophysics, 396(3), 195–207.CrossRefGoogle Scholar
  37. Mishra, O. P., Singh, A. P., Kumar, D., & Rastogi, B. K. (2014). An insight crack density, saturation rate, and porosity model of the 2001 Bhuj earthquake in the stable continental region of western India. Journal of Asian Earth Sciences, 83, 48–59.CrossRefGoogle Scholar
  38. Mishra, O. P., & Zhao, D. (2003). Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter a fluid-driven earthquake? Earth and Planetary Science Letters, 212(3–4), 393–405.CrossRefGoogle Scholar
  39. Mohan, K, Kushwaha D, Chaudhary, P. & Nagar, M. (2017). Characterization of North Kathiawar Fault using Magnetotellurics in Northwest Saurashtra, Gujarat. Institute of Seismological Research Annual Report-2017, pp. 101.Google Scholar
  40. Mohan, K., Chaudhary, P., Patel, P., Chaudhary, B. S., & Chopra, S. (2018). Magnetotelluric study to characterize Kachchh Mainland Fault (KMF) and Katrol Hill Fault (KHF) in the western part of Kachchh region of Gujarat, India. Tectonophysics, 726, 43–61.CrossRefGoogle Scholar
  41. Mohan, K., Rastogi, B. K., & Chaudhary, P. (2015). Magnetotelluric studies in the epicenter zone of 2001, Bhuj earthquake. Journal of Asian Earth Sciences, 98, 75–84.CrossRefGoogle Scholar
  42. Naganjaneyulu, K., Ledo, J. J., & Queralt, P. (2010). Deep crustal electromagnetic structure of Bhuj earthquake region (India) and its implications. Geologica Acta, 8(1), 83–97.Google Scholar
  43. Naganjaneyulu, K., & Santosh, M. (2011). Geophysical signatures of fluids in a reactivated Precambrian collisional suture in central India. Geoscience Frontiers, 2(3), 289–301.CrossRefGoogle Scholar
  44. Newton, R. C. (1989). Metamorphic fluids in the deep crust. Annual Review of Earth and Planetary Sciences, 17, 385–412.CrossRefGoogle Scholar
  45. Patro, B. P. K., Harinarayana, T., Sastry, R. S., Rao, M., Manoj, C., Naganjaneyulu, K., et al. (2005). Electrical imaging of Narmada–Son lineament zone, central India from magnetotellurics. Physics of the Earth and Planetary Interiors, 148, 215–232.CrossRefGoogle Scholar
  46. Prasad, B. R., Venkateswarlu, N., Prasad, A. S. S. S. R. S., Murthy, A. S. N., & Sateesh, T. (2010). Basement configuration of on-land Kutch basin from seismic refraction studies and modeling of first arrival travel time skips. Journal of Asian Earth Sciences, 39(5), 460–469.CrossRefGoogle Scholar
  47. Rao, K. M., Ravi Kumar, M., & Rastogi, B. K. (2015). Crust beneath the northwestern Deccan volcanic province, India: Evidence for uplift and magmatic underplating. Journal of Geophysical Research, 120(5), 3385–3405.Google Scholar
  48. Raval, U. (2001). Earthquakes over Kutch: A region of ‘trident’ space–time geodynamics. Current Science, 81(7), 809–815.Google Scholar
  49. Rodi, W., & Mackie, R. L. (2001). Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66, 174–187.CrossRefGoogle Scholar
  50. Sastry, R. S., Nandini, N., & Sarma, S. V. S. (2008). Electrical imaging of deep crustal features of Kutch, India. Geophysical Journal International, 172, 934–944.CrossRefGoogle Scholar
  51. Seshu, D., Rama Rao, P., & Naganjaneyulu, K. (2015). Three-Dimensional gravity modeling of Kutch region, India. Journal of Asian Earth Sciences, 115, 16–28.CrossRefGoogle Scholar
  52. Singh, A. P., Dorbath, C., Kumar, M. R., Kumar, S., Choudhary, I., & Kayal, J. R. (2016). Fault Geometry of the Mw 7.7 Western India intraplate earthquake: Constrained from double-difference tomography and fault-plane solutions. Bulletin of the Seismological Society of America, 106(4), 5–10. Scholar
  53. Smith, J. T. (1995). Understanding telluric distortion matrices. Geophysical Journal International, 122(1), 219–226.CrossRefGoogle Scholar
  54. Smith, J. T. (1997). Estimating galvanic-distortion magnetic fields in magnetotellurics. Geophysical Journal International, 130(1), 65–72.CrossRefGoogle Scholar
  55. Stanley, W. D. (1989). Comparison of geoelectrical/tectonic models for suture zones in the western USA and eastern Europe: are black shales a possible source of high conductivities? Physics of the Earth and Planetary Interiors, 53, 228–238.CrossRefGoogle Scholar
  56. Stesky, R. M., & Brace, W. F. (1973). Electrical conductivity of serpentinized rocks to 6 kilobars. Journal of Geophysical Research, 78, 7614–7621.CrossRefGoogle Scholar
  57. Swift, C.M. (1967). A magnetotelluric investigation of electrical conductivity anomaly in the southwestern United States, 1967, PhD thesis, Massachusetts Institute of Technology.Google Scholar
  58. Unsworth, M., Wenbo, W., Jones, A. G., Li, S., Bedrosian, P., Booker, J., et al. (2004). Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data. Journal of Geophysical Research, 109, B02403.CrossRefGoogle Scholar
  59. Wadia, D. N. (1926). Geology of India. London: Macmillan.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Peush Chaudhary
    • 1
  • Kapil Mohan
    • 1
    Email author
  • B. S. Chaudhary
    • 2
  1. 1.Institute of Seismological ResearchGandhinagarIndia
  2. 2.Department of GeophysicsKurukshetra UniversityKurukshetraIndia

Personalised recommendations