Advertisement

Seismic Hazard Assessment of the Democratic Republic of Congo and Environs Based on the GEM–SSA Catalogue and a New Seismic Source Model

  • Georges Mavonga TulukaEmail author
  • Jeanpy Lukindula
  • Raymond J. Durrheim
Article
  • 15 Downloads

Abstract

A new probabilistic seismic hazard assessment has been performed for the Democratic Republic of Congo (DRC) and surrounding areas. The DRC encompasses both intra-plate and active tectonic areas associated with the Congo Craton and the western branch of the East African Rift System, respectively. The seismic hazard assessment is based on the new Sub-Saharan-Global Earthquake Model Sub-Saharan–Global Earthquake Model earthquake catalogue with homogeneous magnitude representation (Mw) created by augmenting available global catalogues (e.g. International Seismological Center (ISC)-Reviewed, ISC–GEM, GCMT) with information from local agencies and regional projects, particularly from the AfricaArray network. This catalogue spans from 1900 to 2015. The initial declustered catalogue has 782 events. The historical earthquake record is sparse with significant variation in completeness over time across different regions. After taking the completeness of the catalogue into account, the final declustered catalogue used to calibrate the magnitude-frequency distribution of events used for the seismic hazard assessment spans 55 years (from 1960 to 2015) with 398 events and a magnitude of completeness of about 4.5. The maximum credible magnitude of earthquakes was determined using the entire catalogue from 1900 to 2015. The seismotectonic zonation into 15 seismic source areas was done on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of thermal springs and earthquake epicentres. Also, consideration was given to a regional strain rate model developed for the East African Rift by Saria et al. (Journal of Geophysical Research, 119, 3584–3600, 2014) in the frame of the GEM Strain Rate Project. Tectonic information was derived mostly from the scientific literature and by integration of available datasets. The current area source model consists of a total of 15 seismic zones distributed over 6 main tectonic groups that we assume to have comparable rheological and mechanical behavior with respect to the underlying crustal geology. The definition of these groups is essential for the regional calibration of b values. The b value is expected to be regionally stable with variations less than the uncertainty limits, while the activity rate λ is liable to vary substantially from one seismic source zone to another. The Gutenberg–Richter seismic hazard parameters were determined using Aki’s maximum likelihood method Aki (Bulletin of the Earthquake Research Institute, Tokyo University, 43, 237–239, 1965) and Weichert’s method Weichert (Bulletin of the Seismological Society of America, 70, 1337–1346, 1980), and compared with extension of the Aki-Utsu b value estimator for incomplete catalogues Kijko and Smit (Bulletin of the Seismological Society of America, 102, 1183–1287, 2012). Hazard computations were performed using the OpenQuake engine (version 2.7.0-1). The peak ground acceleration (PGA) and spectral acceleration at periods of 0.05, 0.1, 0.2, 0.5, 1 and 2 s was calculated using four ground motion prediction equations (GMPEs): two for active shallow crust Chiou et al. (Earthquake Spectra, 30, 1117–1153, 2014); Akkar et al. (Bulletin of Earthquake Engineering, 12, 359–387, 2014) and two for stable continental conditions Atkinson et al. (Bulletin of the Seismological Society of America, 96, 2181–2205, 2006; Pezeshk et al. (Bulletin of the Seismological Society of America, 101, 1859–1870, 2011) for soil sites corresponding to Vs 30 = 600, 760 and 1500 m/s at 11 cities of the DRC and surrounding areas. The results are consistent with those obtained using the regional frequency-independent attenuation law of Mavonga (Physics of the Earth and Planetary Interiors, 62, 13–21, 2007b) developed in the Kivu Rift segment and others Twesigomwe (Journal of African Earth Sciences, 24, 183–195, 1997), and Jonathan (Some aspects of seismicity in Zimbabwe and Eastern and Southern Africa. M.Sc. thesis. Institute of solid earth physics, Univ. Bergen, Bergen, Norway, pp. 100 (1996)), using Crisis 2012 software.

Keywords

Probabilistic seismic hazard assessment DR Congo seismic zonation source model earthquake catalogue OpenQuake engine 

Notes

Acknowledgements

We would like to thank Dr. Marco Pagani and Graeme Weatherill for their generous during our stay at the GEM headquarters in Pavia, Italy, where we were trained in using OpenQuake Engine which was very useful for this study.

References

  1. Aki, K. (1965). Maximum likelihood estimate of b in the formula log N = a − bM and its confidence limits. Bulletin of the Earthquake Research Institute, Tokyo University, 43, 237–239.Google Scholar
  2. Akkar, S., Sandikkaya, M. A., & Bommer, J. J. (2014). Empirical ground-motion models for point and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 12, 359–387.CrossRefGoogle Scholar
  3. Ambraseys, N. N., & Adams, R. D. (1991). Reappraisal of major African earthquakes, south of 20°N, 1900-1930. Tectonophysics, 209, 293–296.CrossRefGoogle Scholar
  4. Asfaw, L., Bilham, R., Jackson, M., & Mohr, P. (1992). Recent inactivity in the African Rift. Nature, 357, 447.CrossRefGoogle Scholar
  5. Atkinson, G., & Boore, D. (2006). Earthquake ground-motion prediction equations for eastern North America. Bulletin of the Seismological Society of America, 96, 2181–2205.CrossRefGoogle Scholar
  6. Ayele, A. (2002). Active compressional tectonics in Central Africa and implications for plate tectonic models: evidence from fault mechanism studies of the 1998 earthquakes in the Congo Basin. Journal of African Earth Sciences, 35, 45–50.CrossRefGoogle Scholar
  7. Barth, A., Wenzel, F., & Giardini, D. (2007). Frequency sensitive moment tensor inversion for light to moderate magnitude earthquakes in eastern Africa. Geophysical Research Letters, 34, L15302.CrossRefGoogle Scholar
  8. Bender, B., & Perkins, D. M. (1987). Seisrisk III-A computer programme for seismic hazard estimation. United States Geological Survey Bulletin, 1772, 48.Google Scholar
  9. Biggs, J., Nissen, E., Craig, T., Jackson, J., & Robinson, D. (2010). Breaking up the hangingwall of a rift-border fault: the 2009 Karonga earthquakes, Malawi. Geophysical Research Letters, 37, L11305.Google Scholar
  10. Bilham, R., Bendick, R., Larson, K., Mohr, P., Braun, J., Tesfaye, S., et al. (1999). Secular and tidal strain across the Main Ethiopian Rift. Geophysical Research Letters, 26, 2789–2792.CrossRefGoogle Scholar
  11. Boutakoff, N. (1939). Geologie des terrains situes a l’ouest et Nord-Ouest du fosse tectonique du Kivu, IX(1). Mem. Inst. Geol. Univ. Louvain, pp. 1–207.Google Scholar
  12. Bram, K. (1972). Seismicity of Katanga and Western Zambia, southwest of East African Rift System, from 1960 to 1971. Bulletin of the Seismological Society of America, 62, 1211–1216.Google Scholar
  13. Cahen, L. (1954). Geologie du congo belge (p. 577). Liege: Vaillant-Carmanne.Google Scholar
  14. Chiou, B. S.-J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30, 1117–1153.CrossRefGoogle Scholar
  15. Chorowicz, J. (2005). The East African rift system. Journal of African Earth Sciences, 43, 379–410.CrossRefGoogle Scholar
  16. Chu, D., & Gordon, R. G. (1999). Evidence for motion between Nubia and Somalia along the Southwest Indian ridge. Nature, 398, 64–66.CrossRefGoogle Scholar
  17. Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 18, 1583–1606.Google Scholar
  18. Craig, T. J., Jackson, J. A., Priestley, K., & McKenzie, D. M. (2011). Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structures, and their rheological implications. Geophysical Journal International, 185, 403–434.CrossRefGoogle Scholar
  19. De Bremaecker, J. C. L. (1955). Determination des magnitudes des seismes du Congo Belge. Acad. Roy. Soc. Col. Bulletin des Seances, 1, 1043–1046.Google Scholar
  20. De Bremaecker, J. C. L. (1959). Seismicity of the Western African Rift Valley. Journal of Geophysical Research, 64, 1961–1966.CrossRefGoogle Scholar
  21. De Mets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101, 425–478.CrossRefGoogle Scholar
  22. Delvaux, D., & Barth, A. (2010). African stress pattern from formal inversion of focal mechanism data. Implications for rifting dynamics. Tectonophysics, 482, 105–128.CrossRefGoogle Scholar
  23. Delvaux, D., Kervyn, F., Macheyeki, A. S., & Temu, E. B. (2012). Geodynamic significance of the TRM segment in the East African Rift (W-Tanzania): active tectonics and paleostress in the Ufipa plateau and Rukwa basin. Journal of Structural Geology, 37, 161–180.CrossRefGoogle Scholar
  24. Delvaux, D., Mulumba, J.-L., Fiama, Bondo S., Kervyn, F., & Havenith, H.-B. (2016). Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (Western Branch, East African Rift system). Journal of African Earth Sciences, 134, 831–855.CrossRefGoogle Scholar
  25. D’Oreye, N., Gonzalez, P., Shuler, A., Oth, A., Bagalwa, M., Ekstron, G., et al. (2011). Source parameters of the 2008 Bukavu–Cyangugu earthquake estimated from InSAR and teleseismic data. Geophysical Journal International, 184, 934–948.CrossRefGoogle Scholar
  26. Douglas, J. (2007). On the regional dependence of earthquake response spectra. ISET Journal of Earthquake Technology, 44, 71–99.Google Scholar
  27. Durrheim, R. J. (2016). African Earthquakes. In G. Mulugeta & T. Simelane (Eds.), Natural and human-induced hazards and disasters in Africa (pp. 16–42). Pretoria: Africa Institute of South Africa.Google Scholar
  28. Dziewonski, A. M., Elstrom, G., & Salgamik, M. P. (1996). Centroid moment tensor solutions for July–September 1995. Physics of the Earth and Planetary Interiors, 97, 3–13.CrossRefGoogle Scholar
  29. Ebinger, C. J. (1989a). Tectonic development of the western branch of the East African rift system. Geological Society of America Bulletin, 101, 885–903.CrossRefGoogle Scholar
  30. Ebinger, C. J. (1989b). Geometric and kinematic development of border faults and accommodation zones, Kivu–Rusizi Rift, Africa. Tectonics, 8, 117–133.CrossRefGoogle Scholar
  31. Fairhead, J. D., & Stuart, G. W. (1982). Seismicity of the East Africa rift system and comparison with other continental rifts. In G. Palmason (Ed.), Continental and oceanic rifts, geodynamics series, 8 (pp. 41–61). Washington: American Geophysical Union.CrossRefGoogle Scholar
  32. Foster, A. N., & Jackson, J. A. (1998). Source parameters of large African earthquakes: implications for crustal rheology and regional kinematics. Geophysical Journal International, 134, 422–448.CrossRefGoogle Scholar
  33. Girdler, R. W., & McConnell, D. A. (1994). The 1990–1991 Sudan earthquake sequence and the extent of the East African Rift system. Science, 264, 67–70.CrossRefGoogle Scholar
  34. Hartnady, C. J. H., & Benouar, D. (2007). African catalogue of earthquakes (ACE) project: towards earthquake risk reduction in active plate-boundary zones, Africa array workshop, 17–18 July 2007. Abstracts: Johannesburg.Google Scholar
  35. Jestin, F., Huchon, P., & Gaulier, J. M. (1994). The Somalia plate and East African rift system: present-day kinematics. Geophysical Journal International, 116, 637–654.CrossRefGoogle Scholar
  36. Jonathan, E., 1996. Some aspects of seismicity in Zimbabwe and Eastern and Southern Africa. M.Sc. thesis. Institute of solid earth physics, Univ. Bergen, Bergen, Norway, pp. 100.Google Scholar
  37. Kampunzu, A. B., Lubala, R. T., Makutu, M. N., Caron, J. P.-H., Rocci, G., & Vellutini, P.-J. (1986). Les complexes alcalins de la region interlacustre a l’Est du Zaïre et au Burundi, un exemple de massifs anorogeniques de relaxation. Journal of African Earth Sciences, 3, 151–167.CrossRefGoogle Scholar
  38. Kampunzu, A. B., Vellutini, P. J., Caron, L. P. H., Lubala, R. T., Kanika, M., & Rumvegeri, B. T. (1983). Le volcanisme et evolution structurale du Sud-Kivu (Zaïre): un modele d’interpretation geodynamique du volcanisme distensif intracontinental. Bulletin des Centres de Recherche Exploration-Production Elf-Aquitaine, 7, 247–271.Google Scholar
  39. Kijko, A., & Smit, A. (2012). Extension of the Aki-Utsu b Value estimator for incomplete catalogs. Bulletin of the Seismological Society of America, 102, 1183–1287.CrossRefGoogle Scholar
  40. Kk, Gardner J., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64, 1363–1367.Google Scholar
  41. Lowrie, W. (1997). Fundamentals of geophysics. Cambridge: Cambridge University Press.Google Scholar
  42. Lyons, R., Scholz, C., Buoniconti, M., & Martin, M. (2011). Late quaternary stratigraphy of the lake Malawi Rift, East Africa. An integration of drill-core and seismic resection data. Palaeogeography, Palaeoclimatology, Palaeoecology, 303, 20–37.CrossRefGoogle Scholar
  43. Maasha, N. (1975). The seismicity of the Ruwenzori region in Uganda. Journal of Geophysical Research, 80, 1485–1496.CrossRefGoogle Scholar
  44. Maasha, N., & Molnar, P. (1972). Earthquake fault parameters and tectonics in Africa. Journal of Geophysical Research, 77, 5731–5743.CrossRefGoogle Scholar
  45. Macgregor, D. (2015). History of the development of the East African Rift system: a series of interpreted maps through time. Journal of African Earth Sciences, 101, 232–252.CrossRefGoogle Scholar
  46. Mavonga, T. (2007a). Some characteristics of aftershock sequences of major earthquakes from 1994 to 2002 in the Kivu Province, Western Rift valley of Africa. Tectonophysics, 439, 1–12.CrossRefGoogle Scholar
  47. Mavonga, T. (2007b). An estimate of the attenuation relationship for the strong ground motion in the Kivu Province, Western Rift valley of Africa. Physics of the Earth and Planetary Interiors, 62, 13–21.Google Scholar
  48. Mavonga, T., & Durrheim, R. J. (2009). Probabilistic seismic hazard assessment for the democratic Republic of Congo and surrounding areas. South African Journal of Geology, 112, 329–342.CrossRefGoogle Scholar
  49. Midzi, V., Hlatywayo, D. J., Chapola, L. S., Kebede, F., Atakan, K., Lombe, D. K., et al. (1999). Seismic hazard assessment in eastern and southern Africa. Annals of Geophysics, 42, 1067–1083.Google Scholar
  50. Midzi, V., & Manzunzu, B. (2014). Large recorded earthquakes in sub-Saharan Africa. In A. Ismail-Zadeh, J. Urrutia-Fucagauchi, A. Kijko, & I. Zaliapin (Eds.), Extreme Natural Hazards (pp. 214–224). Cambridge: Disaster Risks and Societal Implications, Cambridge University Press.Google Scholar
  51. Midzi, V., Saunders, I., Manzunzu, B., Kwadiba, M. T., Jele, V., Mantsha, R., et al. (2018). The 03 April 2017 Botswana M6.5 earthquake preliminary results. Journal of African Earth Sciences, 149, 187–194.CrossRefGoogle Scholar
  52. Mignan, A., & Woessner, J. (2012). Theme IV—understanding seismicity catalogs and their problems. Technical Report  https://doi.org/10.5078/corssa-00180805, Community online resource for statistical seismicity analysis.
  53. Musson, R. M. W. (1999). Probabilistic seismic hazard maps for the north Balkan region. Annali di Geofisica, 42, 1109–1124.Google Scholar
  54. National Earthquake Disaster Committee, (1994). Preliminary report on earthquake disaster in Kabalore, Bundibugyo and Kasese districts. Ministry of Labour and Social Affairs, pp. 56.Google Scholar
  55. Ordaz, M., Aguilar, A., & Arboleda, J. (2013). CRISIS2012 ver. 4.5: program for computing seismic hazard. Mexico: Instituto de Ingenieria, UNAM.Google Scholar
  56. Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., et al. (2014). OpenQuake-engine: an open hazard (and risk) software for the global earthquake model. Seismological Research Letters, 85, 692–702.CrossRefGoogle Scholar
  57. Pasteels, P., Villeneuve, M., De Paepe, P., & Klerkx, J. (1989). Timing of the volcanism of the southern Kivu province: implications for the evolution of the western branch of the East African Rift system. Earth and Planetary Science Letters, 94, 353–363.CrossRefGoogle Scholar
  58. Pezeshk, S., Zandieh, A., & Tavakoli, B. (2011). Hybrid empirical ground-motion prediction equations for eastern North America using NGA models and updated seismological parameters. Bulletin of the Seismological Society of America, 101, 1859–1870.CrossRefGoogle Scholar
  59. Poggi, V., Durrheim, R., Mavonga, T. G., Weatherill, G., Gee, R., Pagani, M., et al. (2017). Assessing seismic hazard of the East African Rift: a pilot study from GEM and Africa Array. Bulletin of Earthquake Engineering, 15, 4499–4529.CrossRefGoogle Scholar
  60. Pouclet, A., Bellon, H., & Bram, K. (2016). The cenozoic volcanism in the Kivu rift: assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions. Journal of African Earth Sciences, 121, 219–246.CrossRefGoogle Scholar
  61. Ross, K. A., Smets, B., De Batist, M., Hilbe, M., Schmid, M., & Anselmetti, F. S. (2014). Lake-level rise in the late Pleistocene and active subaquatic volcanism since the Holocene in Lake Kivu, East African rift. Geomorphology, 221, 274–285.CrossRefGoogle Scholar
  62. Rydelek, P. A., & Sacks, J. S. (1989). Testing the completeness of earthquake catalogues and the hypothesis of self-similarity. Nature, 337, 249–251.CrossRefGoogle Scholar
  63. Saria, E., Calais, E., Stamps, D. S., Delvaux, D., & Hartnady, C. J. H. (2014). Present-day kinematics of the East African Rift. Journal of Geophysical Research, 119, 3584–3600.Google Scholar
  64. Sebagenzi, M. N., & Kaputo, K. (2002). Geophysical evidences of continental break up in the south-east of the Democratic Republic of Congo and Zambia (Central Africa). European Geophysical Union Stephan Mueller Special Publication Series, 2, 193–206.CrossRefGoogle Scholar
  65. Shudofsky, G. N. (1985). Source mechanisms and focal depths of East African earthquakes using Rayleigh-wave inversion and body-wave modelling. Geophysical Journal of the Royal Astronomical Society, 83, 563–614.CrossRefGoogle Scholar
  66. Stepp, J. C. (1971). An investigation of earthquake risk in the Puget Sound area by use of the type I distribution of largest extremes. Ph.D. thesis, Pennsylvania State University.Google Scholar
  67. Studt, F. E., Cornet, J., & Buttgenbach, H. (1908). Carte geologique du Katanga et notes descriptive. Annales du Musee du Congo Belge, 3 plates, pp. 95.Google Scholar
  68. Tack, L., & De Paepe, P. (1983). Le volcanisme du Sud-Kivu dans le nord de la plaine de la Rusizi au Burundi et ses relations avec les formations geoologiques avoisinantes. Mus. Roy. Afr. Centr. Tervuren (Belg.) Dept. Geol. Min. Rapp. Ann., 1981, 137–145.Google Scholar
  69. Tanaka, K., Horiuchi, S., Sato, T., & Zana, N. (1980). The earthquake generating stress in the Western Rift Valley of Africa. Journal of the Physics of the Earth, 29, 45–57.CrossRefGoogle Scholar
  70. Turyomurugyendo, G. (1996). Some aspects of seismic Hazard in the East and South African region. M.Sc. thesis. Institute of Solid Earth Physics, University of Bergen, Bergen, Norway, pp. 80Google Scholar
  71. Twesigomwe, E. (1997). Seismic hazard in Uganda. Journal of African Earth Sciences, 24, 183–195.CrossRefGoogle Scholar
  72. Villeneuve, M. (1978). Les centres d’ emmissions volcaniques du rift africain au Sud du lac Kivu (Republique du Zaire). Revue de Géographie Physique et de Géologie Dynamique, 20, 323–334.Google Scholar
  73. Vittori, E., Delvaux, D., & Kervyn, F. (1997). Kanda Fault: a major seismogenic element west of the Rukwa rift (East Africa, Tanzania). Journal of Geodynamics, 24, 139–153.CrossRefGoogle Scholar
  74. Wafula, M., & Zana, N. (1990). Focal mechanism study of earthquakes. Revue des Sciences Naturelles, Centre de Rechercherches en Sciences Naturelles, Zaire, 1, 12–19.Google Scholar
  75. Walpersdorf, A., Vigny, C., Ruegg, J. C., Huchon, P., Asfaw, L. M., & Kirbash, S. A. (1999). 5 years of GPS observations of the Afar Triple Junction area. Journal of Geodynamics, 28, 225–236.CrossRefGoogle Scholar
  76. Weichert, D. H. (1980). Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bulletin of the Seismological Society of America, 70, 1337–1346.Google Scholar
  77. Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95, 684–698.CrossRefGoogle Scholar
  78. Wolhenberg, J. (1968). Remarks on the seismicity of East Africa between 4°N and 12°S and 23° E− 40° E. Tectonophysics, 8, 567–577.CrossRefGoogle Scholar
  79. Wood, D. A., Zal, H. J., Scholz, C. A., Ebinger, C. J., & Nizere, I. (2015). Evolution of the Kivu rift, East Africa: interplay between tectonics, sedimentation, and magmatism. Basin Research, 29, 175–188.CrossRefGoogle Scholar
  80. Yang, Z., & Chen, W. P. (2010). Earthquakes along the East African Rift System: a multiscale, system-wide perspective. Journal of Geophysical Research, 115, B12309.CrossRefGoogle Scholar
  81. Zana, N. (1977). The Seismicity of the Western Rift Valley of Africa and associated problems, PhD Thesis, Tohoku University, Sendai, Japan, pp. 177.Google Scholar
  82. Zana, N., & Hamaguchi, H. (1978). Some characteristics of aftershock sequences in the Western Rift Valley of Africa. Tohoku Geophysical Journal (Science Report, Tohoku. University, Serie 5) Geophysics, 25, 55–72.Google Scholar
  83. Zana, N., Horiuchi, S., Nakamura, E., & Takagi, A. (1990). High frequency earthquakes occurring outside the Western Rift Valley of Africa. Tohoku Geophysical Journal (Science Report, Tohoku University, Serie 5) Geophysics, 33, 69–82.Google Scholar
  84. Zana, N., Kamba, M., Katsongo, S., & Janssen, Th. (1989). Recent seismic activity of the Kivu Province, Western Rift Valley of Africa. Physics of the Earth and Planetary Interiors, 58, 52–60.CrossRefGoogle Scholar
  85. Zana, N., Kavotha, K., & Wafula, M. (1992). Estimate of earthquake risk in Zaire. Tectonophysics, 209, 321–323.CrossRefGoogle Scholar
  86. Zana, N., & Tanaka, K. (1981). Focal mechanism of major earthquakes in the Western Rift valley of Africa. Tohoku Geophysical Journal, 28, 119–121.Google Scholar
  87. Zana, N., Wafula, M., Lukaya, N., & Batabolo, M. (2004). The Kabalo earthquake in D. R. Congo on September 11, 1992: Field observations and damages. Quelques résultats de Recherches en Géophysique. Centre de Recherches et Pedagogie Appliqués, Institut Pedagogique National, Kinshasa, 1, 77–89.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of GeologyUniversity of GomaGomaCongo
  2. 2.School of GeosciencesUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.Department of SeismologyGoma Volcanic ObservatoryGomaCongo

Personalised recommendations