Advertisement

Challenges in the Detection of Ionospheric Pre-Earthquake Total Electron Content Anomalies (PETA) for Earthquake Forewarning

  • B. J. M. Lim
  • E. C. LeongEmail author
Article
  • 49 Downloads

Abstract

Various studies have investigated the link between seismic activity and ionospheric precursory phenomena. Many of these retrospective case studies have supported the existence of pre-earthquake ionospheric anomalies by examining past earthquake events using a variety of analytical methods. Based on existing methodologies, however, the conversion of a retrospective analysis to a prospective forewarning scenario is not a straightforward process. The obstacles to its potential adoption stem mainly from assumptions made during data analysis and interpretation. In this study, several parameters pertaining to existing approaches for the detection of these ionospheric anomalies are highlighted and discussed, in particular ionosphere total electron content (TEC). A detailed examination is conducted to understand the roles that each of these parameters play in the detection process and the consequent difficulties when adopting them in a prospective analysis. These issues include accounting for variations in ionosphere characteristics owing to different measurement platforms (e.g. ground- and space-based observations) and statistical methods (e.g. standard deviation envelopes) used in detecting anomalies. Furthermore, the necessity of excluding space weather contributions in the underlying TEC fluctuations poses a challenge in determining the validity of observed ionospheric anomalies. The notion of an “earthquake preparation zone” is also evaluated in the context of the ionosphere, along with its implications in a forewarning scenario. These issues need to be addressed in current research in order to enable its possible application in earthquake forewarning.

Keywords

Earthquakes precursor TEC seismo-ionospheric anomalies statistical analysis 

Notes

Acknowledgements

The authors would like to acknowledge the support given by Nanyang Technological University (NTU)–Satellite Research Centre (SaRC) under the project grant (EDB VELOX-CI M4061198.040.70213100) for this study.

References

  1. Afraimovich, E., Astafieva, E., Gokhberg, M., Lapshin, V., Permyakova, V., Steblov, G., et al. (2004). Variations of the total electron content in the ionosphere from GPS data recorded during the Hector Mine earthquake of October 16, 1999, California. Russian Journal of Earth Sciences, 6, 339–354.CrossRefGoogle Scholar
  2. Afraimovich, E. L., & Astafyeva, E. I. (2008). TEC anomalies—Local TEC changes prior to earthquakes or TEC response to solar and geomagnetic activity changes? Earth Planets and Space, 60, 961–966.CrossRefGoogle Scholar
  3. Afraimovich, E., Astafyeva, E., Oinats, A., Yasukevich, Y. V., & Zhivetiev, I. (2008). Global electron content: A new conception to track solar activity. Annales Geophysicae, 26, 335–344.CrossRefGoogle Scholar
  4. Aggarwal, M. (2015). Anomalous changes in ionospheric TEC during an earthquake event of 13–14 April 2010 in the Chinese sector. Advances in Space Research, 56, 1400–1412.CrossRefGoogle Scholar
  5. Akhoondzadeh, M. (2013a). An Adaptive Network-based Fuzzy Inference System for the detection of thermal and TEC anomalies around the time of the Varzeghan, Iran, (M w = 6.4) earthquake of 11 August 2012. Advances in Space Research, 52, 837–852.CrossRefGoogle Scholar
  6. Akhoondzadeh, M. (2013b). Genetic algorithm for TEC seismo-ionospheric anomalies detection around the time of the Solomon (M w = 8.0) earthquake of 06 February 2013. Advances in Space Research, 52, 581–590.CrossRefGoogle Scholar
  7. Akhoondzadeh, M. (2013c). A MLP neural network as an investigator of TEC time series to detect seismo-ionospheric anomalies. Advances in Space Research, 51, 2048–2057.CrossRefGoogle Scholar
  8. Akhoondzadeh, M. (2013d). Support vector machines for TEC seismo-ionospheric anomalies detection. Annales Geophysicae, 31, 173–186.CrossRefGoogle Scholar
  9. Akhoondzadeh, M. (2015). Application of Artificial Bee Colony algorithm in TEC seismo-ionospheric anomalies detection. Advances in Space Research, 56(6), 1200–1211.CrossRefGoogle Scholar
  10. Anderson, D. L., & Whitcomb, J. H. (1975). Time-dependent seismology. Journal of Geophysical Research, 80(11), 1497–1503.CrossRefGoogle Scholar
  11. Akhoondzadeh, M., & Saradjian, M. (2011). TEC variations analysis concerning Haiti (January 12, 2010) and Samoa (September 29, 2009) earthquakes. Advances in Space Research, 47, 94–104.CrossRefGoogle Scholar
  12. Astafyeva, E., Afraimovich, E., Oinats, A., Yasukevich, Y. V., & Zhivetiev, I. (2008). Dynamics of global electron content in 1998–2005 derived from global GPS data and IRI modeling. Advances in Space Research, 42, 763–769.CrossRefGoogle Scholar
  13. Astafyeva, E., & Heki, K. (2011). Vertical TEC over seismically active region during low solar activity. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 1643–1652.CrossRefGoogle Scholar
  14. Astafyeva, E., Rolland, L., Lognonné, P., Khelfi, K., & Yahagi, T. (2013). Parameters of seismic source as deduced from 1 Hz ionospheric GPS data: Case study of the 2011 Tohoku-oki event. Journal of Geophysical Research Space Physics, 118, 5942–5950.CrossRefGoogle Scholar
  15. Astafyeva, E., Rolland, L. M., & Sladen, A. (2014). Strike-slip earthquakes can also be detected in the ionosphere. Earth and Planetary Science Letters, 405, 180–193.CrossRefGoogle Scholar
  16. Barkat, A., Ali, A., Rehman, K., Awais, M., Tariq, M. A., Ahmed, J., et al. (2018). Multi-precursory analysis of Phalla earthquake (July 2015; M w 5.1) near Islamabad, Pakistan. Pure and Applied Geophysics, 2018, 1–16.Google Scholar
  17. Boughazi, K., Rebouh, S., Aiche, M., & Harkat, N. (2014). Seismic risk and urbanization: The notion of prevention. Case of the city of Algiers. Procedia Economics and Finance, 18, 544–551.CrossRefGoogle Scholar
  18. Bowman, D., Ouillon, G., Sammis, C., Sornette, A., & Sornette, D. (1998). An observational test of the critical earthquake concept. Journal of Geophysical Research Solid Earth, 103, 24359–24372.CrossRefGoogle Scholar
  19. Bruevich, E., & Yakunina, G. (2014). Correlation study of six solar activity indices in the cycles 21 ± 23. Sun and Geosphere, 8, 83–90.Google Scholar
  20. Calais, E., & Minster, J. B. (1995). GPS detection of ionospheric perturbations following the January 17, 1994, Northridge Earthquake. Geophysical Research Letters, 22, 1045–1048.CrossRefGoogle Scholar
  21. Carpenter, D. (2004). Remote sensing the Earth’s plasmasphere. Radio Science Bulletin, 308, 13–29.Google Scholar
  22. Chauhan, V., Singh, O., Kushwah, V., Singh, V., & Singh, B. (2009). Ultra-low-frequency (ULF) and total electron content (TEC) anomalies observed at Agra and their association with regional earthquakes. Journal of Geodynamics, 48, 68–74.CrossRefGoogle Scholar
  23. Chen, Y.-I., Liu, J.-Y., Tsai, Y.-B., & Chen, C.-S. (2004). Statistical tests for pre-earthquake ionospheric anomaly. Terrestrial Atmospheric and Oceanic Sciences, 15, 385–396.CrossRefGoogle Scholar
  24. Chmyrev, V., Isaev, N., Serebryakova, O., Sorokin, V., & Sobolev, Y. P. (1997). Small-scale plasma inhomogeneities and correlated ELF emissions in the ionosphere over an earthquake region. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 967–974.CrossRefGoogle Scholar
  25. Choi, B.-K., & Lee, S. J. (2016). Anomalous ionospheric disturbances over South Korea prior to the 2011 Tohoku earthquake. Advances in Space Research, 57, 302–308.CrossRefGoogle Scholar
  26. Choi, B., Park, J., & Lee, S. (2012). Ionospheric anomalies observed over South Korea preceding the Great Tohoku earthquake of 2011. Advances in Space Research, 50, 311–317.CrossRefGoogle Scholar
  27. Ciraolo, L., & Spalla, P. (1999). A statistics of time and space variability of ionospheric electron content at middle latitudes. In: 4th COST 251 Workshop. Madeira, Portugal.Google Scholar
  28. Clarivate Analytics. (2017). Web of Science product webpage. https://clarivate.com/products/web-of-science/. Accessed 22 Jan 2017.
  29. Contadakis, M.E., Arabelos, D.N., Pikridas, C., & Spatalas, S. (2010). TEC variations over South Europe before and during the M6. 3 Abruzzo earthquake of 6th April 2009. In: EGU General Assembly Conference Abstracts (p. 2113).Google Scholar
  30. Contadakis, M., Arabelos, D., Vergos, G., Spatalas, S., & Skordilis, M. (2015). TEC variations over the Mediterranean before and during the strong earthquake (M = 6.5) of 12th October 2013 in Crete, Greece. Physics and Chemistry of the Earth Parts A/B/C, 85, 9–16.CrossRefGoogle Scholar
  31. Dai, X., Liu, J., & Zhang, H. (2015). Application of AR model in the analysis of preearthquake ionospheric anomalies. Mathematical Problems in Engineering, 2015. Google Scholar
  32. Dautermann, T., Calais, E., Haase, J., & Garrison, J. (2007). Investigation of ionospheric electron content variations before earthquakes in southern California, 2003–2004. Journal of Geophysical Research Solid Earth, 112, B02106.Google Scholar
  33. De Santis, A., De Franceschi, G., Spogli, L., Perrone, L., Alfonsi, L., Qamili, E., et al. (2015). Geospace perturbations induced by the Earth: The state of the art and future trends. Physics and Chemistry of the Earth Parts A/B/C, 85, 17–33.CrossRefGoogle Scholar
  34. Depueva, A., & Ruzhin, Y. (1993). The equatorial earthquake preparatory stage as a reason of “fountain” effect in the ionosphere. Preprint IZMIRAN N, 82, 1029.Google Scholar
  35. Devi, M., Barbara, A., Depueva, A., & Depuev, V. (2008). Preliminary results of TEC measurements in Guwahati, India. Advances in Space Research, 42, 753–756.CrossRefGoogle Scholar
  36. Devi, M., Barbara, A., Depueva, A., Ruzhin, Y. Y., & Depuev, V. (2010). Anomalous total electron content (TEC) and atmospheric refractivity prior to the very strong China earthquake of May 2008. International Journal of Remote Sensing, 31, 3589–3599.CrossRefGoogle Scholar
  37. Devi, M., Barbara, A., Oyama, K.-I., & Chen, C.-H. (2014). Earthquake induced dynamics at the ionosphere in presence of magnetic storm. Advances in Space Research, 53, 609–618.CrossRefGoogle Scholar
  38. DeVries, P. M. R., Viégas, F., Wattenberg, M., & Meade, B. J. (2018). Deep learning of aftershock patterns following large earthquakes. Nature, 560, 632–634.CrossRefGoogle Scholar
  39. Dieminger, W., Hartmann, G. K., & Leitinger, R. (2012). The upper atmosphere: Data analysis and interpretation. Berlin: Springer.Google Scholar
  40. Ding, F., Wan, W., Mao, T., Wang, M., Ning, B., Zhao, B., et al. (2014). Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophysical Research Letters, 41, 3351–3358.CrossRefGoogle Scholar
  41. Dobrovolsky, I., Zubkov, S., & Miachkin, V. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117, 1025–1044.CrossRefGoogle Scholar
  42. Dogan, U., Ergintav, S., Skone, S., Arslan, N., & Oz, D. (2011). Monitoring of the ionosphere TEC variations during the 17th August 1999 Izmit earthquake using GPS data. Earth Planets and Space, 63, 1183–1192.CrossRefGoogle Scholar
  43. Ferretti, A., Colombo, D., Fumagalli, A., Novali, F., & Rucci, A. (2015). InSAR data for monitoring land subsidence: Time to think big. Proceedings of the International Association of Hydrological Sciences, 372, 331–334.CrossRefGoogle Scholar
  44. Freund, F. (2000). Time-resolved study of charge generation and propagation in igneous rocks. Journal of Geophysical Research Solid Earth, 105, 11001–11019.CrossRefGoogle Scholar
  45. Freund, F. T., Kulahci, I. G., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., et al. (2009). Air ionization at rock surfaces and pre-earthquake signals. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 1824–1834.CrossRefGoogle Scholar
  46. Galvan, D. A., Komjathy, A., Hickey, M. P., Stephens, P., Snively, J., Tony Song, Y., et al. (2012). Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: Model comparisons near the epicenter. Radio Science, 47, RS4003.CrossRefGoogle Scholar
  47. Guo, J., Li, W., Liu, X., Wang, J., Chang, X., & Zhao, C. (2015). On TEC anomalies as precursor before M w 8.6 Sumatra earthquake and M w 6.7 Mexico earthquake on April 11, 2012. Geosciences Journal, 19, 721–730.CrossRefGoogle Scholar
  48. Guo, J., Yu, H., Li, W., Liu, X., Kong, Q., & Zhao, C. (2016). Total electron content anomalies before M w 6.0+ earthquakes in the seismic zone of Southwest China between 2001 and 2013. Journal of Testing and Evaluation, 45, 131–139.Google Scholar
  49. Hasbi, A. M., Ali, M., & Misran, N. (2011). Ionospheric variations before some large earthquakes over Sumatra. Natural Hazards and Earth System Sciences, 11, 597–611.CrossRefGoogle Scholar
  50. Hasbi, A.M., Momani, M., Ali, M., & Misran, N. (2009). The relationship between the ionospheric and magnetic disturbances during the 28 March 2005 Sumatran earthquake. In: Space Science and Communication, 2009. IconSpace 2009. International Conference on (pp. 166–170): IEEE.Google Scholar
  51. Hayakawa, M., & Molchanov, O. A. (2002). Seismo-electromagnetics: Lithosphere–atmosphere–ionosphere coupling. Tokyo: Terra Scientific Publishing Company.Google Scholar
  52. He, L., Wu, L., De Santis, A., Liu, S., & Yang, Y. (2014). Is there a one-to-one correspondence between ionospheric anomalies and large earthquakes along Longmenshan faults? Annales Geophysicae, 2014, 187–196.CrossRefGoogle Scholar
  53. He, L., Wu, L., Pulinets, S., Liu, S., & Yang, F. (2012). A nonlinear background removal method for seismo-ionospheric anomaly analysis under a complex solar activity scenario: A case study of the M9. 0 Tohoku earthquake. Advances in Space Research, 50, 211–220.CrossRefGoogle Scholar
  54. Heki, K. (2011). Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophysical Research Letters, 38, L17312.CrossRefGoogle Scholar
  55. Heki, K., & Enomoto, Y. (2013). Preseismic ionospheric electron enhancements revisited. Journal of Geophysical Research Space Physics, 118, 6618–6626.CrossRefGoogle Scholar
  56. Hirooka, S., Hattori, K., Nishihashi, M., Kon, S., & Takeda, T. (2012). Development of ionospheric tomography using neural network and its application to the 2007 Southern Sumatra earthquake. Electrical Engineering in Japan, 181, 9–18.CrossRefGoogle Scholar
  57. Hocke, K. (2008). Oscillations of global mean TEC. Journal of Geophysical Research Space Physics, 113, A04302.Google Scholar
  58. Hsiao, C.-C., Liu, J., Oyama, K.-I., Yen, N., Liou, Y., Chen, S., et al. (2010). Seismo-ionospheric precursor of the 2008 M w7. 9 Wenchuan earthquake observed by FORMOSAT-3/COSMIC. GPS Solutions, 14, 83–89.CrossRefGoogle Scholar
  59. Hwa, H.Y., & Zain, A.F.M. (2005). Detection of ionospheric perturbation after Northern Sumatra earthquake on 26 December 2004. In, Applied Electromagnetics, 2005. APACE 2005. Asia-Pacific Conference on (p. 4 pp.): IEEE.Google Scholar
  60. Islam, M., Sultana, N., Bushra, N., Banna, L., Tusher, T., & Ansary, M. (2015). Effects of earthquake on urbanization in Dhaka City. Journal of Environmental Science and Natural Resources, 6, 107–112.Google Scholar
  61. Jhuang, H.-K., Ho, Y.-Y., Kakinami, Y., Liu, J.-Y., Oyama, K.-I., Parrot, M., et al. (2010). Seismo-ionospheric anomalies of the GPS-TEC appear before the 12 May 2008 magnitude 8.0 Wenchuan Earthquake. International Journal of Remote Sensing, 31, 3579–3587.CrossRefGoogle Scholar
  62. Jiang, W., Ma, Y., Zhou, X., Li, Z., An, X., & Wang, K. (2017). Analysis of ionospheric vertical total electron content before the 1 April 2014 M w 8.2 Chile earthquake. Journal of Seismology, 21(6), 1599–1612.CrossRefGoogle Scholar
  63. Jin, S., Occhipinti, G., & Jin, R. (2015). GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth Science Reviews, 147, 54–64.CrossRefGoogle Scholar
  64. Jing, X., Yiyan, Z., & Yun, W. (2011). Ionospheric VTEC anomalies before Ms7.1 Yushu earthquake. Geodesy and Geodynamics, 2, 48–52.CrossRefGoogle Scholar
  65. Jordan, T., Chen, Y.-T., Gasparini, P., Madariaga, R., Main, I., Marzocchi, W., et al. (2011). Operational earthquake forecasting: State of knowledge and guidelines for implementation. Annals of Geophysics, 54, 4.Google Scholar
  66. Kakinami, Y., Kamogawa, M., Liu, J.-Y., Watanabe, S., & Mogi, T. (2011). Ionospheric disturbance associated with radiation accidents of Fukushima I nuclear power plant damaged by the M9. 0 2011 Tohoku Earthquake. Advances in Space Research, 48, 1613–1616.CrossRefGoogle Scholar
  67. Kakinami, Y., Yamamoto, M., Chen, C. H., Watanabe, S., Lin, C., Liu, J. Y., et al. (2013). Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. Journal of Geophysical Research Space Physics, 118, 5184–5189.CrossRefGoogle Scholar
  68. Kamogawa, M., & Kakinami, Y. (2013). Is an ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake a precursor? Journal of Geophysical Research Space Physics, 118, 1751–1754.CrossRefGoogle Scholar
  69. Karatay, S., Arikan, F., & Arikan, O. (2010). Investigation of total electron content variability due to seismic and geomagnetic disturbances in the ionosphere. Radio Science, 45, RS5012.CrossRefGoogle Scholar
  70. Karia, S., & Pathak, K. (2011). Change in refractivity of the atmosphere and large variation in TEC associated with some earthquakes, observed from GPS receiver. Advances in Space Research, 47, 867–876.CrossRefGoogle Scholar
  71. Karia, S., Sarkar, S., & Pathak, K. (2012). Analysis of GPS-based TEC and electron density by the DEMETER satellite before the Sumatra earthquake on 30 September 2009. International Journal of Remote Sensing, 33, 5119–5134.CrossRefGoogle Scholar
  72. Karia, S., Sarkar, S., Pathak, K., Sharma, A. K., Ranganath, H., & Gwal, A. K. (2013). Analysis of space-and ground-based parameters prior to an earthquake on 12 December 2009. International Journal of Remote Sensing, 34, 7779–7795.CrossRefGoogle Scholar
  73. Ke, F., Wang, Y., Wang, X., Qian, H., & Shi, C. (2016). Statistical analysis of seismo-ionospheric anomalies related to Ms > 5.0 earthquakes in China by GPS TEC. Journal of Seismology, 20, 137–149.CrossRefGoogle Scholar
  74. Klimenko, M., Klimenko, V., Zakharenkova, I., Pulinets, S., Zhao, B., & Tsidilina, M. (2011). Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008. Advances in Space Research, 48, 488–499.CrossRefGoogle Scholar
  75. Klotz, S., & Johnson, N. (1983). Encyclopedia of statistical sciences. Oxford: Wiley.Google Scholar
  76. Komjathy, A., Galvan, D. A., Stephens, P., Butala, M., Akopian, V., Wilson, B., et al. (2012). Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study. Earth Planets and Space, 64, 1287–1294.CrossRefGoogle Scholar
  77. Kon, S., Nishihashi, M., & Hattori, K. (2011). Ionospheric anomalies possibly associated with M⩾ 6.0 earthquakes in the Japan area during 1998–2010: Case studies and statistical study. Journal of Asian Earth Sciences, 41, 410–420.CrossRefGoogle Scholar
  78. Kondratenko, A., & Nersesov, I. (1962). Some results of a study of changes in the speeds of longitudinal and transverse waves in the focal zone. Physics of Earthquakes and Explosion Seismology (in Russian), 25, 130.Google Scholar
  79. Kouris, S., & Fotiadis, D. (2002). Ionospheric variability: A comparative statistical study. Advances in Space Research, 29, 977–985.CrossRefGoogle Scholar
  80. Kouris, S., Polimeris, K., & Cander, L. R. (2006). Specifications of TEC variability. Advances in Space Research, 37, 983–1004.CrossRefGoogle Scholar
  81. Krankowski, A., Zakharenkova, I. E., & Shagimuratov, I. I. (2006). Response of the ionosphere to the Baltic Sea earthquake of 21 September 2004. Acta Geophysica, 54, 90–101.CrossRefGoogle Scholar
  82. Le, H., Liu, J.-Y., & Liu, L. (2011). A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002–2010. Journal of Geophysical Research Space Physics, 116, A02303.Google Scholar
  83. Leyva-Contreras, A., Bisiacchi-Giraldi, G., Pulinets, S., & Ciraolo, L. (2005). Total electron content variations in the ionosphere before the Colima, Mexico, earthquake of 21 January 2003. Geofisica Internacional, 44, 369–377.Google Scholar
  84. Li, K., Rollins, J., & Yan, E. (2018). Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics, 115, 1–20.CrossRefGoogle Scholar
  85. Lin, J.-W. (2010). Two-dimensional ionospheric total electron content map (TEC) seismo-ionospheric anomalies through image processing using principal component analysis. Advances in Space Research, 45, 1301–1310.CrossRefGoogle Scholar
  86. Lin, J.-W. (2011a). Is it possible to trace an impending earthquake’s occurrence from seismo-ionospheric disturbance using principal component analysis? A study of Japan’s Iwate-Miyagi Nairiku earthquake on 13 June 2008. Computers and Geosciences, 37, 855–860.CrossRefGoogle Scholar
  87. Lin, J. (2011b). Seismo-ionospheric disturbance using principal component analysis—a study of Japan’s Iwate-Miyagi Nairiku earthquake on 13 June 2008. Acta Geodaetica et Geophysica Hungarica, 46, 1–9.CrossRefGoogle Scholar
  88. Lin, J.-W. (2013). Ionospheric Anomaly due to the volcanic eruption in Colima, Mexico, 06 January 2013: Two-dimensional principal component analysis. European Journal of Remote Sensing, 46, 689–698.CrossRefGoogle Scholar
  89. Liperovsky, V., Pokhotelov, O., Liperovskaya, E., Parrot, M., Meister, C.-V., & Alimov, O. (2000). Modification of sporadic E-layers caused by seismic activity. Surveys In Geophysics, 21, 449–486.CrossRefGoogle Scholar
  90. Liu, J., Chen, C., Chen, Y., Yang, W., Oyama, K., & Kuo, K. (2010a). A statistical study of ionospheric earthquake precursors monitored by using equatorial ionization anomaly of GPS TEC in Taiwan during 2001–2007. Journal of Asian Earth Sciences, 39, 76–80.CrossRefGoogle Scholar
  91. Liu, J.-Y., Chen, Y., Chuo, Y., & Chen, C.-S. (2006a). A statistical investigation of preearthquake ionospheric anomaly. Journal of Geophysical Research Space Physics, 111, A05304.Google Scholar
  92. Liu, J., Chen, Y., Chuo, Y., & Tsai, H. (2001). Variations of ionospheric total electron content during the Chi–Chi earthquake. Geophysical Research Letters, 28, 1383–1386.CrossRefGoogle Scholar
  93. Liu, L., Chen, Y., Le, H., Kurkin, V. I., Polekh, N. M., & Lee, C. C. (2011). The ionosphere under extremely prolonged low solar activity. Journal of Geophysical Research Space Physics, 116, A04320.Google Scholar
  94. Liu, J. Y., Chuo, Y. J., Shan, S. J., Tsai, Y. B., Pulinets, S. A., & Yu, S. B. (2004). Pre-earthquake ionospheric anomalies monitored by GPS TEC. Annales Geophysicae, 22, 1585–1593.CrossRefGoogle Scholar
  95. Liu, J., Lin, C., Chen, Y., Lin, Y., Fang, T., Chen, C., et al. (2006b). Solar flare signatures of the ionospheric GPS total electron content. Journal of Geophysical Research Space Physics, 111, A05308.Google Scholar
  96. Liu, W., & Xu, L. (2017). Statistical analysis of ionospheric TEC anomalies before global M w ≥ 70 earthquakes using data of CODE GIM. Journal of Seismology, 21(4), 759–775.CrossRefGoogle Scholar
  97. Liu, J. Y., Chen, Y. I., Chen, C. H., & Hattori, K. (2010b). Temporal and spatial precursors in the ionospheric global positioning system (GPS) total electron content observed before the 26 December 2004 M93 Sumatra-Andaman Earthquake. Journal of Geophysical Research Space Physics, 115, 312.Google Scholar
  98. Mareev, E., Iudin, D., & Molchanov, O. (2002). Mosaic source of internal gravity waves associated with seismic activity. In M. Hayakawa (Ed.), Seismo-electromagnetics: Lithosphere–atmosphere–ionosphere coupling (pp. 335–342). Tokyo: Terra Scientific Publishing Company.Google Scholar
  99. Masci, F. (2012). The study of ionospheric anomalies in Japan area during 1998–2010 by Kon et al.: An inaccurate claim of earthquake-related signatures? Journal of Asian Earth Sciences, 57, 1–5.CrossRefGoogle Scholar
  100. Masci, F. (2013). Further comments on the ionospheric precursor of the 1999 Hector Mine earthquake. Natural Hazards and Earth System Sciences, 13, 193–196.CrossRefGoogle Scholar
  101. Masci, F., & Thomas, J. N. (2014). Comment on “Temporal and spatial precursors in ionospheric total electron content of the 16 October 1999 M w 7.1 Hector Mine earthquake” by Su et al. (2013). Journal of Geophysical Research Space Physics, 119, 6994–6997.CrossRefGoogle Scholar
  102. Masci, F., & Thomas, J. (2015). On the reliability of the Spatial Scintillation Index to detect earthquake precursors in the ionosphere. Radio Science, 50, 745–753.CrossRefGoogle Scholar
  103. Masci, F., Thomas, J. N., & Secan, J. A. (2017). On a reported effect in ionospheric TEC around the time of the 6 April 2009 L’Aquila earthquake. Natural Hazards and Earth Systems Sciences, 17, 1461–1468.CrossRefGoogle Scholar
  104. Masci, F., Thomas, J. N., Villani, F., Secan, J. A., & Rivera, N. (2015). On the onset of ionospheric precursors 40 min before strong earthquakes. Journal of Geophysical Research Space Physics, 120, 1383–1393.CrossRefGoogle Scholar
  105. Mazzella, A. J. (2009). Plasmasphere effects for GPS TEC measurements in North America. Radio Science, 44, RS5014.CrossRefGoogle Scholar
  106. Mendillo, M., Huang, C.-L., Pi, X., Rishbeth, H., & Meier, R. (2005). The global ionospheric asymmetry in total electron content. Journal of Atmospheric and Solar Terrestrial Physics, 67, 1377–1387.CrossRefGoogle Scholar
  107. Molchanov, O., & Hayakawa, M. (1995). Generation of ULF electromagnetic emissions by microfracturing. Geophysical Research Letters, 22, 3091–3094.CrossRefGoogle Scholar
  108. Molchanov, O., & Hayakawa, M. (1998). On the generation mechanism of ULF seismogenic electromagnetic emissions. Physics of the Earth and Planetary Interiors, 105, 201–210.CrossRefGoogle Scholar
  109. Monroe, J. S., Wicander, R., & Hazlett, R. W. (2007). Physical geology: Exploring the Earth (p. c2007). Belmont: Thomson Brooks/Cole.Google Scholar
  110. Moore, G.W. (1964). Magnetic disturbances preceding the 1964 Alaska earthquake, pp. 508–509.Google Scholar
  111. Mukhtarov, P., Pancheva, D., Andonov, B., & Pashova, L. (2013). Global TEC maps based on GNSS data: 1. Empirical background TEC model. Journal of Geophysical Research Space Physics, 118, 4594–4608.CrossRefGoogle Scholar
  112. Namgaladze, A., Klimenko, M., Klimenko, V., & Zakharenkova, I. (2009). Physical mechanism and mathematical modeling of earthquake ionospheric precursors registered in total electron content. Geomagnetism and Aeronomy, 49, 252–262.CrossRefGoogle Scholar
  113. Natali, M. P., & Meza, A. (2011). Annual and semiannual variations of vertical total electron content during high solar activity based on GPS observations. Annales Geophysicae, 29, 865–873.CrossRefGoogle Scholar
  114. Nenovski, P., Pezzopane, M., Ciraolo, L., Vellante, M., Villante, U., & De Lauretis, M. (2015). Local changes in the total electron content immediately before the 2009 Abruzzo earthquake. Advances in Space Research, 55, 243–258.CrossRefGoogle Scholar
  115. Perevalova, N., Sankov, V., Astafyeva, E., & Zhupityaeva, A. (2014). Threshold magnitude for ionospheric TEC response to earthquakes. Journal of Atmospheric and Solar Terrestrial Physics, 108, 77–90.CrossRefGoogle Scholar
  116. Ping, J., Matsumoto, K., Heki, K., Saito, A., Callahan, P., Potts, L., et al. (2004). Validation of Jason-1 nadir ionosphere TEC using GEONET. Marine Geodesy, 27, 741–752.CrossRefGoogle Scholar
  117. Plotkin, V. (2003). GPS detection of ionospheric perturbation before the 13 February 2001, El Salvador earthquake. Natural Hazards and Earth System Science, 3, 249–253.CrossRefGoogle Scholar
  118. Polyakov, Y. S., Ryabinin, G. V., Solovyeva, A. B., & Timashev, S. F. (2015). Is it possible to predict strong earthquakes? Pure and Applied Geophysics, 172, 1945–1957.CrossRefGoogle Scholar
  119. Pulinets, S. (2004). Ionospheric precursors of earthquakes; recent advances in theory and practical applications. Terrestrial Atmospheric and Oceanic Sciences, 15, 413–436.CrossRefGoogle Scholar
  120. Pulinets, S., & Boyarchuk, K. (2004). Ionospheric precursors of earthquakes. Berlin: Springer.Google Scholar
  121. Pulinets, S., Kotsarenko, A., Ciraolo, L., & Pulinets, I. (2007). Special case of ionospheric day-to-day variability associated with earthquake preparation. Advances in Space Research, 39, 970–977.CrossRefGoogle Scholar
  122. Pulinets, S., Legen’Ka, A., Gaivoronskaya, T., & Depuev, V. K. (2003). Main phenomenological features of ionospheric precursors of strong earthquakes. Journal of Atmospheric and Solar Terrestrial Physics, 65, 1337–1347.CrossRefGoogle Scholar
  123. Pulinets, S., & Ouzounov, D. (2011). Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—an unified concept for earthquake precursors validation. Journal of Asian Earth Sciences, 41, 371–382.CrossRefGoogle Scholar
  124. Pundhir, D., Singh, B., & Singh, O. (2014). Anomalous TEC variations associated with the strong Pakistan–Iran border region earthquake of 16 April 2013 at a low latitude station Agra, India. Advances in Space Research, 53, 226–232.CrossRefGoogle Scholar
  125. Reddy, C. D., Shrivastava, M. N., Seemala, G. K., González, G., & Baez, J. C. (2016). Ionospheric plasma response to M w 8.3 Chile Illapel earthquake on September 16, 2015. Pure and Applied Geophysics, 173, 1451–1461.CrossRefGoogle Scholar
  126. Rikitake, T. (1969). An approach to prediction of magnitude and occurrence time of earthquakes. Tectonophysics, 8, 81–95.CrossRefGoogle Scholar
  127. Rikitake, T. (1975). Dilatancy model and empirical formulas for an earthquake area. Pure and Applied Geophysics, 113, 141–147.CrossRefGoogle Scholar
  128. Rishbeth, H. (2006). Ionoquakes: Earthquake precursors in the ionosphere? Eos Transactions American Geophysical Union, 87, 316.CrossRefGoogle Scholar
  129. Saba, M. F., Gonzalez, W., & Clúa de Gonzalez, A. (1997). Relationships between the AE, ap and Dst indices near solar minimum (1974) and at solar maximum (1979). Annales Geophysicae, 15, 1265–1270.CrossRefGoogle Scholar
  130. Sánchez-Dulcet, F., Rodríguez-Bouza, M., Silva, H., Herraiz, M., Bezzeghoud, M., & Biagi, P. (2015). Analysis of observations backing up the existence of VLF and ionospheric TEC anomalies before the M w6. 1 earthquake in Greece, January 26, 2014. Physics and Chemistry of the Earth Parts A/B/C, 85, 150–166.CrossRefGoogle Scholar
  131. Sarkar, S., & Gwal, A. (2010). Satellite monitoring of anomalous effects in the ionosphere related to the great Wenchuan earthquake of May 12, 2008. Natural Hazards, 55, 321–332.CrossRefGoogle Scholar
  132. Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.CrossRefGoogle Scholar
  133. She, C., Wan, W., Yue, X., Xiong, B., Yu, Y., Ding, F., et al. (2017). Global ionospheric electron density estimation based on multisource TEC data assimilation. GPS Solutions, 21, 1125–1137.CrossRefGoogle Scholar
  134. Singh, O., Chauhan, V., Singh, V., & Singh, B. (2009). Anomalous variation in total electron content (TEC) associated with earthquakes in India during September 2006–November 2007. Physics and Chemistry of the Earth Parts A/B/C, 34, 479–484.CrossRefGoogle Scholar
  135. Šlégr, J., & Váňová, K. (2017). Stochastic properties of lower ionosphere as earthquake precursor. Journal of Seismology, 21, 243–248.CrossRefGoogle Scholar
  136. Sompotan, A. F., Puspito, N. T., Joelianto, E., & Hattori, K. (2015). Analysis of ionospheric precursor of earthquake using GIM-TEC, Kriging and neural network. Asian Journal of Earth Sciences, 8, 32–44.CrossRefGoogle Scholar
  137. Surkov, V. (1999). ULF electromagnetic perturbations resulting from the fracture and dilatancy in the earthquake preparation zone. In M. Hayakawa (Ed.), Atmospheric and ionospheric phenomena associated with earthquakes (pp. 357–370). Tokyo: Terrapub.Google Scholar
  138. Surkov, V., Molchanov, O., & Hayakawa, M. (2003). Pre-earthquake ULF electromagnetic perturbations as a result of inductive seismomagnetic phenomena during microfracturing. Journal of Atmospheric and Solar Terrestrial Physics, 65, 31–46.CrossRefGoogle Scholar
  139. Thomas, J., Huard, J., & Masci, F. (2017). A statistical study of global ionospheric map total electron content changes prior to occurrences of M ≥ 6.0 earthquakes during 2000–2014. Journal of Geophysical Research Space Physics, 122, 2151–2161.Google Scholar
  140. Thomas, J. N., Love, J. J., Komjathy, A., Verkhoglyadova, O. P., Butala, M., & Rivera, N. (2012). On the reported ionospheric precursor of the 1999 Hector Mine, California earthquake. Geophysical Research Letters, 39, L06302.Google Scholar
  141. Tojiev, S., Ahmedov, B., Tillayev, Y., & Eshkuvatov, H. (2013). Ionospheric anomalies of local earthquakes detected by GPS TEC measurements using data from Tashkent and Kitab stations. Advances in Space Research, 52, 1146–1154.CrossRefGoogle Scholar
  142. Tong, W.K. (1988). Abnormal Animal Behavior and the Prediction of Earthquakes. Master Thesis, Dept. Earth Sciences, Northeastern Illinois University.Google Scholar
  143. Trigunait, A., Parrot, M., Pulinets, S., & Li, F. (2004). Variations of the ionospheric electron density during the Bhuj seismic event. Annales Geophysicae, 22, 4123–4131.CrossRefGoogle Scholar
  144. Tsai, Y.-B., Liu, J.-Y., Ma, K.-F., Yen, H.-Y., Chen, K., Chen, Y., et al. (2004). Preliminary results of the iSTEP program on integrated search for Taiwan earthquake precursors. Terrestrial Atmospheric and Oceanic Sciences, 15, 545–562.CrossRefGoogle Scholar
  145. Ulukavak, M., & Yalcinkaya, M. (2016). Precursor analysis of ionospheric GPS-TEC variations before the 2010 M7.2 Baja California earthquake. Geomatics Natural Hazards and Risk, 8, 295–308.CrossRefGoogle Scholar
  146. Wu, M., Guo, P., Xu, T., Fu, N., Xu, X., Jin, H., et al. (2015). Data assimilation of plasmasphere and upper ionosphere using COSMIC/GPS slant TEC measurements. Radio Science, 50, 1131–1140.CrossRefGoogle Scholar
  147. Xu, G., Han, P., Huang, Q., Hattori, K., Febriani, F., & Yamaguchi, H. (2013). Anomalous behaviors of geomagnetic diurnal variations prior to the 2011 off the Pacific coast of Tohoku earthquake (M w 9.0). Journal of Asian Earth Sciences, 77, 59–65.CrossRefGoogle Scholar
  148. Xu, T., Hu, Y., Wu, J., Wu, Z., Suo, Y., Feng, J., et al. (2010). Abnormal perturbations in the ionospheric F2 region before Wenchuan earthquake on 12 May 2008. Science China Earth Sciences, 53, 1671–1674.CrossRefGoogle Scholar
  149. Yiyan, Z., Yun, W., Xuejun, Q., & Xunxie, Z. (2009). Ionospheric anomalies detected by ground-based GPS before the M w 7. 9 Wenchuan earthquake of May 12, 2008, China. Journal of Atmospheric and Solar Terrestrial Physics, 71, 959–966.CrossRefGoogle Scholar
  150. Yu, T., Mao, T., Wang, Y., & Wang, J. (2009). Study of the ionospheric anomaly before the Wenchuan earthquake. Chinese Science Bulletin, 54, 1080–1086.Google Scholar
  151. Zakharenkova, I., Astafyeva, E., & Cherniak, I. (2016). GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere. Earth Planets and Space, 68, 1–11.CrossRefGoogle Scholar
  152. Zakharenkova, I., Shagimuratov, I., Tepenitzina, N. Y., & Krankowski, A. (2008). Anomalous modification of the ionospheric total electron content prior to the 26 September 2005 Peru earthquake. Journal of Atmospheric and Solar Terrestrial Physics, 70, 1919–1928.CrossRefGoogle Scholar
  153. Zhang, X., Shen, X., Liu, J., Ouyang, X., Qian, J., & Zhao, S. (2009). Analysis of ionospheric plasma perturbations before Wenchuan earthquake. Natural Hazards and Earth System Science, 9, 1259–1266.CrossRefGoogle Scholar
  154. Zhu, F., Su, F., & Lin, J. (2018). Statistical analysis of TEC anomalies prior to M6.0+ earthquakes during 2003–2014. Pure and Applied Geophysics, 175, 3441–3450.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Satellite Research CentreNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Civil and Environmental EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations