Advertisement

The Large Andaman Islands Earthquake of 26 June 1941: Why No Significant Tsunami?

  • Emile A. OkalEmail author
Article
  • 63 Downloads

Abstract

We present a modern seismological study of the earthquake of 26 June 1941 in the Andaman Islands, the largest pre-2004 event along that section of the India-Burma plate boundary. Despite a large conventional magnitude (\(M_{\text {PAS}} \,=\,8.1\)), it generated at best a mediocre tsunami for which no definitive quantitative reports are available. We show that the 1941 earthquake took place under the Andaman accretionary prism and consisted of a composite event, whose nucleating phase had a strike-slip mechanism incompatible with a data set of spectral amplitudes of mantle Rayleigh and Love waves. Combining this initial phase with a larger normal faulting mechanism can reconcile them with P-wave first motions, reports of subsidence on the eastern coast of the Andaman Islands and the small amplitudes of any putative tsunami. The small tsunami results from a combination of that mechanism and of a source located under the islands themselves and in shallow water, implying a reduction in amplitude under Green’s law when transitioning to a deeper basin.

Keywords

Tsunami Andaman Islands historical earthquakes 

Notes

Acknowledgements

We are grateful to Ian Saunders (Pretoria), Bernard Dost (De Bilt) and Brian Ferris (Lower Hutt) for access to the excellent seismological archives at their respective facilities. Some figures were drawn using the GMT software (Wessel and Smith 1991). The paper benefited from the constructive comments of two anonymous reviewers.

References

  1. Abe, K. (1981). Magnitudes of large shallow earthquakes from 1904 to 1980. Physics of the Earth and Planetary Interiors, 27, 72–92.CrossRefGoogle Scholar
  2. Bilham, R., Engdahl, E. R., Feldl, N., & Satyabala, S. P. (2005). Partial and complete rupture of the Indo-Andaman plate boundary, 1847–2004. Seismological Research Letters, 76, 299–311.CrossRefGoogle Scholar
  3. Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3), GC000252.CrossRefGoogle Scholar
  4. Boen, T. (2006). Sructural damage in the March 2005 Nias-Simeulue earthquake. Earthquake Spectra, 22, S419–S434.CrossRefGoogle Scholar
  5. Brune, J. N. (1968). Seismic moment, seismicity, and rate of slip along major fault zones. Journal of Geophysical Research, 73, 777–784.CrossRefGoogle Scholar
  6. Brune, J. N., & Engen, G. R. (1969). Excitation of mantle Love waves and definition of mantle wave magnitude. Bulletin of the Seismological Society of America, 59, 923–933.Google Scholar
  7. Chlieh, M., Avouac, J.-P., Hjörleifsdóttir, V., Song, T.-R. A., Ji, C., Sieh, K., et al. (2007). Coseismic slip and afterslip of the great \(M_w \,=\, 9.15\) Sumatra-Andaman earthquake of 2004. Bulletin of the Seismological Society of America, 97, S152–S173.CrossRefGoogle Scholar
  8. Cochran, J. R. (2010). Morphology and tectonics of the Andaman Forearc, Northeastern Indian Ocean. Geophysical Journal International, 182, 631–651.CrossRefGoogle Scholar
  9. Courant, R., Friedrichs, K., & Lewy, H. (1928). Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100, 32–74.CrossRefGoogle Scholar
  10. Curray, J. R. (2005). Tectonics and history of the Andaman Sea region. Journal of Asian Earth Sciences, 25, 187–232.CrossRefGoogle Scholar
  11. Dalrymple, R.A., & Derakhti, M. (2018). Tsunami generation by earthquakes: Seabed topography and inertial effects. In: Proceedings 36th international conference on coastal engineering, 1605, Baltimore [abstract].Google Scholar
  12. Diehl, T., Waldhauser, F., Cochran, J. R., Kamesh Raju, K. A., Seeber, L., Schaff, D., et al. (2013). Back-arc extension in the Andaman Sea: Tectonic and magmatic processes imaged by high-precision teleseismic double-difference earthquake relocation. Journal of Geophysical Research: Solid Earth, 118, 2206–2224.Google Scholar
  13. Dziewonski, A. M., Chou, T. A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86, 2825–2852.CrossRefGoogle Scholar
  14. Ebel, J. E., & Chambers, D. W. (2016). Using the locations of \(M \, \ge \,4\) earthquakes to delineate the extents of the ruptures of past major earthquakes. Geophysical Journal International, 207, 862–875.CrossRefGoogle Scholar
  15. Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project, 2004–2010: Centroid moment tensors for 13,107 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9.CrossRefGoogle Scholar
  16. Engdahl, E. R., & Villaseñor, A. (2002). Global seismicity: 1900–1999. In International earthquake and engineering seismology Part A (pp. 665–690). New York: Elsevier.Google Scholar
  17. Fitch, T. J. (1972). Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and Western Pacific. Journal of Geophysical Research, 77, 4442–4460.CrossRefGoogle Scholar
  18. Frohlich, C., & Apperson, K. D. (1992). Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics, 11, 279–296.CrossRefGoogle Scholar
  19. Geller, R. J. (1976). Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66, 1501–1523.Google Scholar
  20. Godunov, S. K. (1959). Finite difference methods for numerical computations of discontinuous solutions of the equations of fluid dynamics. Matematicheskiĭ Sbornik, 47, 271–295.Google Scholar
  21. Goodstein, J. R., Kanamori, H., & Lee, W. H. K. (1980). Seismology microfiche publications from the Caltech archives. Bulletin of the Seismological Society of America, 70, 657–658.Google Scholar
  22. Green, G. (1837). On the motion of waves in a canal of variable depth. Cambridge Philosophical Transactions, 6, 457–462.Google Scholar
  23. Gutenberg, B., & Richter, C. F. (1954). Seismicity of the Earth and associated phenomena. Princeton: Princeton University Press.Google Scholar
  24. Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature, 435, 933–936.CrossRefGoogle Scholar
  25. Jhingran, A. G. (1953). A note on the earthquake in the Andaman Islands (26 June 1941). Records of the Geological Survey of India, 82, 300–307.Google Scholar
  26. Kagan, Y. Y. (1991). 3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106, 709–716.CrossRefGoogle Scholar
  27. Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82, 2981–2987.CrossRefGoogle Scholar
  28. Lorito, S., Piatanesi, A., Cannelli, V., Romano, F., & Melini, D. (2010). Kinematics and source zone properties of the 2004 Sumatra-Andaman earthquake and tsunami: Nonlinear joint inversion of tide gauge, satellite altimetry, and GPS data. Journal of Geophysical Research, 115(B2), B02304.CrossRefGoogle Scholar
  29. Mansinha, L., & Smylie, D. E. (1971). The displacement fields of inclined faults. Bulletin of the Seismological Society of America, 61, 1433–1440.Google Scholar
  30. Murty, T.S. (1984). Storm surges: Meteorological ocean tides, Can. Bull. Fisheries Aquat. Sci., 212, Dept. Fisheries Oceans, Ottawa.Google Scholar
  31. Murty, T. S., & Rafiq, M. (1991). A tentative list of tsunamis in the Indian Ocean. Natural Hazards, 4, 81–83.CrossRefGoogle Scholar
  32. Okal, E. A. (2005). A re-evaluation of the great Aleutian and Chilean earthquakes of 1906 August 17. Geophysical Journal International, 161, 268–282.CrossRefGoogle Scholar
  33. Okal, E. A. (2015). Historical seismograms: Preserving an endangered species. GeoResJ, 6, 53–64.CrossRefGoogle Scholar
  34. Okal, E. A., Kirby, S. H., & Kalligeris, N. (2016). The Showa Sanriku earthquake of 1933 March 2: A global seismological reassessment. Geophysical Journal International, 206, 1492–1514.CrossRefGoogle Scholar
  35. Okal, E. A., & Saloor, N. (2017). Historical tsunami earthquakes in the Southwest Pacific: An extension to \(\Delta \,>\, 80^{\circ }\) of the Energy-to-Moment parameter \(\Theta \). Geophysical Journal International, 210, 852–873.CrossRefGoogle Scholar
  36. Okal, E. A., & Stein, S. (2009). Observations of ultra-long period normal modes from the 2004 Sumatra-Andaman earthquake. Physics of the Earth and Planetary Interiors, 175, 53–62.CrossRefGoogle Scholar
  37. Okal, E. A., & Synolakis, C. E. (2008). Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophysical Journal International, 172, 995–1015.CrossRefGoogle Scholar
  38. Okal, E. A., & Talandier, J. (1989). \(M_m\): A variable period mantle magnitude. Journal of Geophysical Research, 94, 4169–4193.CrossRefGoogle Scholar
  39. Ortíz, M., & Bilham, R. (2003). Source area and rupture parameters of the 31 December 1881 \(M_w \,=\, 7.9\) Car Nicobar earthquake estimated from tsunamis recorded in the Bay of Bengal. Journal of Geophysical Research, 108(B4), 2215.CrossRefGoogle Scholar
  40. Rajendran, C. P. (2013). Was the 1941 Andaman earthquake tsunamigenic? Comments on “Inundation studies for Nagapattinam region on the East coast of India due to tsunamigenic earthquakes from the Andaman region” by Srivastava et al. Natural Hazards, 65, 981–984.CrossRefGoogle Scholar
  41. Ramana Murthy, M. V., Usha, T., Pari, Y., & Reddy, N. T. (2011). Tsunami vulnerability assessment of Cuddalore using numerical model and GIS. Marine Geodesy, 34, 16–28.CrossRefGoogle Scholar
  42. Rees, B. A., & Okal, E. A. (1987). The depth of the deepest historical earthquakes. Pure and Applied Geophysics, 125, 699–715.CrossRefGoogle Scholar
  43. Reymond, D., & Okal, E. A. (2000). Preliminary determination of focal mechanisms from the inversion of spectral amplitudes of mantle waves. Physics of the Earth and Planetary Interiors, 121, 249–271.CrossRefGoogle Scholar
  44. Richter, C. F. (1958). Elementary seismology. San Francisco: Freeman.Google Scholar
  45. Ritsema, A. R., & Veldkamp, J. (1960). Fault plane mechanisms of Southeast Asian earthquakes. Publ. Koninkl. Nederl. Meteorolog. Inst., 72, 63. (De Bilt).Google Scholar
  46. Saito, T., & Furumura, T. (2009). Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophysical Journal International, 178, 877–888.CrossRefGoogle Scholar
  47. Salaree, A., & Okal, E. A. (2018). The “tsunami earthquake” of 13 April 1923 in Northern Kamchatka: Seismological and hydrodynamic investigations. Pure and Applied Geophysics, 175, 1257–1285.CrossRefGoogle Scholar
  48. Sella, G. F., Dixon, T. H., & Mao, A. (2002). REVEL: A model for Recent plate velocities from space geodesy. Journal of Geophysical Research, 107(B4), ETG-11.CrossRefGoogle Scholar
  49. Smyshlyaev, A. A. (2003). Vremya krasnoĭ ryby, pp. 310–315. Petropavlovsk-Kamchatskiĭ: Novaya Kniga [in Russian].Google Scholar
  50. Srivastava, K., Krishna Kumar, R., Swapna, M., Swaroopa Rani, V., & Dimri, V. P. (2012). Inundation studies for Nagapattinam region on the East coast of India due to tsunamigenic earthquakes from the Andaman region. Natural Hazards, 63, 211–221.CrossRefGoogle Scholar
  51. Storchak, D. A., Di Giacomo, D., Engdahl, E. R., Harris, J., Bondár, I., Lee, W. H. K., et al. (2015). The ISC-GEM global instrumental earthquake catalogue (1900–2009): Introduction. Physics of the Earth and Planetary Interiors, 239, 48–63.CrossRefGoogle Scholar
  52. Synolakis, C. E. (2003). Tsunami and seiche. In W.-F. Chen & C. Scawthron (Eds.), Earthquake engineering handbook (pp. 9_1–9_90). Boca Raton: CRC Press.Google Scholar
  53. Synolakis, C., Bernard, E., Titov, V., Kânoğlu, U., & González, F. (2008). Validation and verification of tsunami numerical models. Pure and Applied Geophysics, 165, 2197–2228.CrossRefGoogle Scholar
  54. Titov, V., Kânoğlu, U., & Synolakis, C. (2016). Development of MOST for real-time tsunami forecasting. Journal of Waterway Port Coastal and Ocean Engineering, 142(6), 03116004.CrossRefGoogle Scholar
  55. Titov, V. V., & Synolakis, C. E. (1998). Numerical modeling of tidal wave runup. Journal of Waterway Port Coastal and Ocean Engineering, 124, 157–171.CrossRefGoogle Scholar
  56. Tsai, V. C., Nettles, M., Ekström, G., & Dziewonski, A. M. (2005). Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophysical Research Letters, 32(17), L17304.CrossRefGoogle Scholar
  57. Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. Eos Transactions American Geophysical Union, 72, 441 and 445–446.CrossRefGoogle Scholar
  58. Wickens, A.J., & Hodgson, J.H. (1967). Computer re-evaluation of earthquake mechanism solutions, 1922–1962. Publications of the Dominion Observatory, Ottawa (vol. 33, no. 1). Ottawa: Dept. Energy, Mines, Res.Google Scholar
  59. Wysession, M. E., Okal, E. A., & Miller, K. L. (1991). Intraplate seismicity of the Pacific Basin, 1913–1988. Pure and Applied Geophysics, 135, 261–359.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations