Advertisement

Spatiotemporal Comparison of Declustered Catalogs of Earthquakes in Turkey

  • Murat NasEmail author
  • Abdollah Jalilian
  • Yusuf Bayrak
Article
  • 76 Downloads

Abstract

In earthquake seismology, an independent earthquake can produce a set of clusters having fore- and/or aftershocks. The main purpose of seismicity declustering is to refine a given earthquake catalog in order to retain independent events. The goal of retention of independent events by only declustering is a crucial benchmark for most of the mainshock-based analysis in seismology. In the present article, we used a re-updated unified earthquake catalog of Turkey and obtained several declustered catalogs applying different declustering methods. To compare the performance of applied declustering methods, each declustered catalog was then examined by simulation envelopes and Monte Carlo tests using some summary statistics for temporal and spatial point patterns. We found that the declustering method of Zhuang et al. (2002) based on the Epidemic Type Aftershock Sequence (ETAS) model, original version, and particularly Grünthal’s variant of the Gardner and Knopoff (1974) method seemed to be most successful in finding and removing clusters in space and time for the earthquake catalog of Turkey examined.

Keywords

Seismicity declustering earthquakes Monte Carlo simulation poisson process Ripley’s K-function Besag’s L-function Allan factor 

Notes

Acknowledgments

The authors thank the anonymous reviewers for their helpful and constructive comments that greatly contributed to improving the final version of the paper. They also thank the handling Editor (Prof. Andrzej Kijko) for his generous comments and support during the all review process.

References

  1. Aki, K. (1956). Some problems in statistical seismology. Zisin (Journal of the Seismological Society of Japan. 2nd ser.), 8(4), 205–228.CrossRefGoogle Scholar
  2. Aki, K., & Lee, W. H. K. (2002). Glossary of interest to earthquake and engineering seismologists. International Geophysics Series, 81(B), 1793–1856.Google Scholar
  3. Akkar, S., Çağnan, Z., Yenier, E., Erdoğan, Ö., Sandıkkaya, M. A., & Gülkan, P. (2010). The recently compiled Turkish strong motion database: Preliminary investigation for seismological parameters [journal article]. Journal of Seismology, 14(3), 457–479.  https://doi.org/10.1007/s10950-009-9176-9.CrossRefGoogle Scholar
  4. Allan, D. W. (1966). Statistics of atomic frequency standards. Proceedings of the IEEE, 54(2), 221–230.CrossRefGoogle Scholar
  5. Alsan, E., Tezuçan, L., & Båth, M. (1976). An earthquake catalogue for Turkey for the interval 1913–1970. Tectonophysics, 31(1), T13–T19.  https://doi.org/10.1016/0040-1951(76)90159-1.CrossRefGoogle Scholar
  6. Al-Tarazi, E., & Sandvol, E. (2007). Alternative models of seismic hazard evaluation along the Jordan-Dead Sea transform. Earthquake Spectra, 23(1), 1–19.  https://doi.org/10.1193/1.2430543.CrossRefGoogle Scholar
  7. Ambraseys, & Jackson, (1998). Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophysical Journal International, 133(2), 390–406.  https://doi.org/10.1046/j.1365-246X.1998.00508.x.CrossRefGoogle Scholar
  8. Ayhan, E., Alsan, E., Sancaklı, N., & Üçer, S. (1981). Turkey and surrounding earthquake catalogue 1881–1980. Istanbul: Boğaziçi University Publications.Google Scholar
  9. Baddeley, A., Diggle, P. J., Hardegen, A., Lawrence, T., Milne, R. K., & Nair, G. (2014). On tests of spatial pattern based on simulation envelopes. Ecological Monographs, 84(3), 477–489.  https://doi.org/10.1890/13-2042.1.CrossRefGoogle Scholar
  10. Baddeley, A. J., Møller, J., & Waagepetersen, R. (2000). Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54(3), 329–350.  https://doi.org/10.1111/1467-9574.00144.CrossRefGoogle Scholar
  11. Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial point patterns: Methodology and applications with R. London: CRC Press.CrossRefGoogle Scholar
  12. Barka, A. A. (1992). The north Anatolian fault zone. Annales Tectonicae, 6(Suppl), 164–195.Google Scholar
  13. Bayrak, Y., Öztürk, S., Çınar, H., Kalafat, D., Tsapanos, T. M., Koravos, G. C., et al. (2009). Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey. Engineering Geology, 105(3–4), 200–210.  https://doi.org/10.1016/j.enggeo.2009.02.004.CrossRefGoogle Scholar
  14. Bayrak, Y., Yilmaztürk, A., & Öztürk, S. (2005). Relationships between fundamental seismic hazard parameters for the different source regions in Turkey. Natural Hazards, 36(3), 445–462.  https://doi.org/10.1007/s11069-005-4038-4.CrossRefGoogle Scholar
  15. Besag, J. E. (1977). Contribution to the discussion on Dr. Ripley’s Paper. Journals of the Royal Statistical Society B, 39(2), 193–195.Google Scholar
  16. Bozkurt, E. (2001). Neotectonics of Turkey—a synthesis. Geodinamica Acta, 14(1–3), 3–30.  https://doi.org/10.1016/S0985-3111(01)01066-X.CrossRefGoogle Scholar
  17. Conover, W. J. (1971). Practical nonparametric statistics. New York: Wiley.Google Scholar
  18. Dawood, H. M., Rodriguez-Marek, A., Bayless, J., Goulet, C., & Thompson, E. (2016). A flatfile for the KiK-net database processed using an automated protocol. Earthquake Spectra, 32(2), 1281–1302.  https://doi.org/10.1193/071214eqs106.CrossRefGoogle Scholar
  19. Delph, J. R., Biryol, C. B., Beck, S. L., Zandt, G., & Ward, K. M. (2015). Shear wave velocity structure of the Anatolian Plate: Anomalously slow crust in southwestern Turkey. Geophysical Journal International, 202(1), 261–276.  https://doi.org/10.1093/gji/ggv141.CrossRefGoogle Scholar
  20. Duman, T. Y., Çan, T., Emre, Ö., Kadirioğlu, F. T., Başarır Baştürk, N., Kılıç, T., et al. (2016). Seismotectonic database of Turkey. Bulletin of Earthquake Engineering.  https://doi.org/10.1007/s10518-016-9965-9.CrossRefGoogle Scholar
  21. Duman, T. Y., & Emre, O. (2013). The east anatolian fault: Geometry, segmentation and jog characteristics. Geological Society Special Publication, 372, 495–529.CrossRefGoogle Scholar
  22. Erdik, M., Doyuran, V., Akkaş, N., & Gülkan, P. (1985). A probabilistic assessment of the seismic hazard in Turkey. Tectonophysics, 117(3–4), 295–344.  https://doi.org/10.1016/0040-1951(85)90275-6.CrossRefGoogle Scholar
  23. Eroglu Azak, T., Kalafat, D., Şeşetyan, K., & Demircioğlu, M. B. (2017). Effects of seismic declustering on seismic hazard assessment: A sensitivity study using the Turkish earthquake catalogue. Bulletin of Earthquake Engineering.  https://doi.org/10.1007/s10518-017-0174-y.CrossRefGoogle Scholar
  24. Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.Google Scholar
  25. Godano, C., Tosi, P., Derubeis, V., & Augliera, P. (1999). Scaling properties of the spatio–temporal distribution of earthquakes: A multifractal approach applied to a Californian catalogue. Geophysical Journal International, 136(1), 99–108.  https://doi.org/10.1046/j.1365-246X.1999.00697.x.CrossRefGoogle Scholar
  26. Grünthal, G. (1985). The up-dated earthquake catalogue for the German democratic Republic and adjacent areas–statistical data characteristics and conclusions for hazard assessment. In: Proceedings of the 3rd International Symposium on the Analysis of Seismicity and Seismic Risk. Liblice Castle, Czechoslovakia.Google Scholar
  27. Gubbins, D. (1990). Seismology and plate tectonics. Cambridge: Cambridge University Press.Google Scholar
  28. Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188.Google Scholar
  29. Habermann, R. E. (1983). Teleseismic detection in the Aleutian Island Arc. Journal of Geophysical Research: Solid Earth, 88(B6), 5056–5064.  https://doi.org/10.1029/JB088iB06p05056.CrossRefGoogle Scholar
  30. Habermann, R. E. (1987). Man-made changes of seismicity rates. Bulletin of the Seismological Society of America, 77(1), 141–159.Google Scholar
  31. Helmstetter, A., Kagan, Y. Y., & Jackson, D. D. (2006). Comparison of short-term and time-independent earthquake forecast models for Southern California. Bulletin of the Seismological Society of America, 96(1), 90–106.  https://doi.org/10.1785/0120050067.CrossRefGoogle Scholar
  32. Kadirioğlu, F. T., & Kartal, R. F. (2016). The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near vicinity (1900–2012). Turkish Journal of Earth Sciences, 25(4), 300–310.  https://doi.org/10.3906/yer-1511-7.CrossRefGoogle Scholar
  33. Kadirioğlu, F. T., Kartal, R. F., Kılıç, T., Kalafat, D., Duman, T. Y., Eroğlu Azak, T., et al. (2016). An improved earthquake catalogue (M ≥ 4.0) for Turkey and its near vicinity (1900–2012). Bulletin of Earthquake Engineering.  https://doi.org/10.1007/s10518-016-0064-8.CrossRefGoogle Scholar
  34. Kagan, Y. Y. (2004). Short-term properties of earthquake catalogs and models of earthquake source. Bulletin of the Seismological Society of America, 94(4), 1207–1228.  https://doi.org/10.1785/012003098.CrossRefGoogle Scholar
  35. Kagan, Y. Y., Bird, P., & Jackson, D. D. (2010). Earthquake patterns in diverse tectonic zones of the globe. Pure and Applied Geophysics, 167(6), 721–741.  https://doi.org/10.1007/s00024-010-0075-3.CrossRefGoogle Scholar
  36. Kagan, Y. Y., & Jackson, D. D. (1991). Long-term earthquake clustering. Geophysical Journal International, 104(1), 117–134.  https://doi.org/10.1111/j.1365-246X.1991.tb02498.x.CrossRefGoogle Scholar
  37. Kalafat, D., Güneş, Y., Kekovali, K., Kara, M., Deniz, P., & Yilmazer, M. (2011). A revised and extented earthquake catalogue for Turkey since 1900 (M ≥ 4.0). In Boğaziçi University, Kandilli Observatory and Earthquake Research Institute (KOERI).Google Scholar
  38. Knopoff, L. (1964). The statistics of earthquakes in Southern California. Bulletin of the Seismological Society of America, 54(6A), 1871–1873.Google Scholar
  39. Knopoff, L., & Gardner, J. K. (1972). Higher seismic activity during local night on the raw worldwide earthquake catalogue. Geophysical Journal of the Royal Astronomical Society, 28(3), 311–313.  https://doi.org/10.1111/j.1365-246X.1972.tb06133.x.CrossRefGoogle Scholar
  40. Leptokaropoulos, K. M., Karakostas, V. G., Papadimitriou, E. E., Adamaki, A. K., Tan, O., & İnan, S. (2013). A homogeneous earthquake catalog for Western Turkey and magnitude of completeness determination. Bulletin of the Seismological Society of America, 103(5), 2739–2751.  https://doi.org/10.1785/0120120174.CrossRefGoogle Scholar
  41. Loosmore, N. B., & Ford, E. D. (2006). Statistical inference using the G or K point pattern spatial statistics. Ecology, 87(8), 1925–1931.  https://doi.org/10.1890/0012-9658(2006)87%5b1925:SIUTGO%5d2.0.CO;2.CrossRefGoogle Scholar
  42. Luen, B., & Stark, P. B. (2012). Poisson tests of declustered catalogues. Geophysical Journal International, 189(1), 691–700.  https://doi.org/10.1111/j.1365-246x.2012.05400.x.CrossRefGoogle Scholar
  43. Marsan, D., & Lengliné, O. (2008). Extending earthquakes’ reach through cascading. Science, 319(5866), 1076–1079.  https://doi.org/10.1126/science.1148783.CrossRefGoogle Scholar
  44. Marsan, D., & Lengliné, O. (2010). A new estimation of the decay of aftershock density with distance to the mainshock. Journal of Geophysical Research: Solid Earth.  https://doi.org/10.1029/2009jb007119.CrossRefGoogle Scholar
  45. Molchan, G. M., & Dmitrieva, O. E. (1992). Aftershock identification: Methods and new approaches. Geophysical Journal International, 109(3), 501–516.  https://doi.org/10.1111/j.1365-246X.1992.tb00113.x.CrossRefGoogle Scholar
  46. Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401), 9–27.  https://doi.org/10.1080/01621459.1988.10478560.CrossRefGoogle Scholar
  47. Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50(2), 379–402.  https://doi.org/10.1023/a:1003403601725.CrossRefGoogle Scholar
  48. Omori, F. (1894). On the aftershocks of earthquakes. Journal of the College of Science, 7, 111–200.Google Scholar
  49. Öztürk, S., Bayrak, Y., Çinar, H., Koravos, G. C., & Tsapanos, T. M. (2008). A quantitative appraisal of earthquake hazard parameters computed from Gumbel I method for different regions in and around Turkey. Natural Hazards, 47(3), 471–495.  https://doi.org/10.1007/s11069-008-9234-6.CrossRefGoogle Scholar
  50. Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth, 90(B7), 5479–5495.  https://doi.org/10.1029/JB090iB07p05479.CrossRefGoogle Scholar
  51. Ripley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society. Series B (Methodological), 39(2), 172–212.CrossRefGoogle Scholar
  52. Saroglu, F., Emre, O., & Kuscu, I. (1992). The east Anatolian fault zone of Turkey. Annales Tectonicae, Suppl.(2), 99–125.Google Scholar
  53. Schorlemmer, D., & Gerstenberger, M. C. (2007). RELM testing center. Seismological Research Letters, 78(1), 30–36.  https://doi.org/10.1785/gssrl.78.1.30.CrossRefGoogle Scholar
  54. Sengör, A. M. C., Görür, N., & Şaroğlu, F. (Eds.). (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as A Case Study (Vol. 37, Strike-Slip Deformation, Basin Formation, and Sedimentation): Society of Economic Paleontologists and Mineralogists Special Publication.Google Scholar
  55. Sengör, A. M. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3–4), 181–241.  https://doi.org/10.1016/0040-1951(81)90275-4.CrossRefGoogle Scholar
  56. Talbi, A., Nanjo, K., Satake, K., Zhuang, J., & Hamdache, M. (2013). Comparison of seismicity declustering methods using a probabilistic measure of clustering. Journal of Seismology, 17(3), 1041–1061.  https://doi.org/10.1007/s10950-013-9371-6.CrossRefGoogle Scholar
  57. Tan, O., Tapirdamaz, M. C., & Yörük, A. (2008). The earthquake catalogues for Turkey. Turkish Journal of Earth Sciences, 17(2), 405–418.Google Scholar
  58. Tatar, O., Akpinar, Z., Gürsoy, H., Piper, J. D. A., Koçbulut, F., Mesci, B. L., et al. (2013). Palaeomagnetic evidence for the neotectonic evolution of the Erzincan Basin, North Anatolian Fault Zone, Turkey. Journal of Geodynamics, 65, 244–258.  https://doi.org/10.1016/j.jog.2012.03.009.CrossRefGoogle Scholar
  59. Telesca, L., Cuomo, V., Lapenna, V., & Macchiato, M. (2002). On the methods to identify clustering properties in sequences of seismic time-occurrences. Journal of Seismology, 6(1), 125–134.  https://doi.org/10.1023/a:1014275509447.CrossRefGoogle Scholar
  60. Telesca, L., Lapenna, V., & Macchiato, M. (2003). Spatial variability of the time-correlated behaviour in Italian seismicity. Earth and Planetary Science Letters, 212(3), 279–290.  https://doi.org/10.1016/S0012-821X(03)00286-3.CrossRefGoogle Scholar
  61. Telesca, L., Lovallo, M., Amin Mohamed, A. E. E., ElGabry, M., El-hady, S., Abou Elenean, K. M., et al. (2012). Investigating the time-scaling behavior of the 2004–2010 seismicity of Aswan area (Egypt) by means of the Allan factor statistics and the detrended fluctuation analysis. Natural Hazards and Earth System Sciences., 12(5), 1267-1276.  https://doi.org/10.5194/nhess-12-1267-2012.
  62. Telesca, L., Lovallo, M., Golay, J., & Kanevski, M. (2016). Comparing seismicity declustering techniques by means of the joint use of Allan Factor and Morisita index. Stochastic Environmental Research and Risk Assessment, 30(1), 77–90.  https://doi.org/10.1007/s00477-015-1030-8.CrossRefGoogle Scholar
  63. Telesca, L., Lovallo, M., Lapenna, V., & Macchiato, M. (2007). Long-range correlations in two-dimensional spatio-temporal seismic fluctuations. Physica A: Statistical Mechanics and its Applications, 377(1), 279–284.  https://doi.org/10.1016/j.physa.2006.10.092.CrossRefGoogle Scholar
  64. Tibi, R., Blanco, J., & Fatehi, A. (2011). An alternative and efficient cluster-link approach for declustering of earthquake catalogs. Seismological Research Letters, 82(4), 509–518.  https://doi.org/10.1785/gssrl.82.4.509.CrossRefGoogle Scholar
  65. Turcotte, D. L., Abaimov, S. G., Shcherbakov, R., & Rundle, J. B. (2007). Nonlinear dynamics of natural hazards. Nonlinear dynamics in geosciences (pp. 557–580). New York: Springer.CrossRefGoogle Scholar
  66. Turkelli, N., Sandvol, E., Zor, E., Gok, R., Bekler, T., Al-Lazki, A., et al. (2003). Seismogenic zones in Eastern Turkey. Geophysical Research Letters, 30(24), 120.  https://doi.org/10.1029/2003gl018023.CrossRefGoogle Scholar
  67. Uhrhammer, R. (1986). Characteristics of northern and central California seismicity. Earthquake Notes, 57(1), 21.Google Scholar
  68. Utsu, T. (1961). A statistical study on the occurrence of aftershocks. Geophysical Magazine, 30, 521–605.Google Scholar
  69. Utsu, T. (1970). Aftershocks and earthquake statistics (1): Some parameters which characterize an aftershock sequence and their interrelations. Geophysics, 3(3), 129–195.Google Scholar
  70. Utsu, T. (2002). Statistical features of seismicity. International Geophysics Series, 81(A), 719–732.CrossRefGoogle Scholar
  71. Van Stiphout, T., Zhuang, J., & Marsan, D. (2012). Seismicity declustering. Community Online Resource for Statistical Seismicity Analysis..  https://doi.org/10.5078/corssa-52382934.CrossRefGoogle Scholar
  72. Vere-Jones, D. (1970). Stochastic models for earthquake occurrence. Journal of the Royal Statistical Society. Series B (Methodological), 32(1), 1–62.CrossRefGoogle Scholar
  73. Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(3), 373–382.  https://doi.org/10.1785/gssrl.72.3.373.CrossRefGoogle Scholar
  74. Wiemer, S., & Wyss, M. (1994). Seismic quiescence before the landers (M = 7.5) and big bear (M = 6.5) 1992 earthquakes. Bulletin of the Seismological Society of America, 84(3), 900–916.Google Scholar
  75. Zaliapin, I., & Ben-Zion, Y. (2011). Asymmetric distribution of aftershocks on large faults in California. Geophysical Journal International, 185(3), 1288–1304.  https://doi.org/10.1111/j.1365-246X.2011.04995.x.CrossRefGoogle Scholar
  76. Zaliapin, I., & Ben-Zion, Y. (2013). Earthquake clusters in southern California I: Identification and stability. Journal of Geophysical Research: Solid Earth, 118(6), 2847–2864.  https://doi.org/10.1002/jgrb.50179.CrossRefGoogle Scholar
  77. Zaliapin, I., Gabrielov, A., Keilis-Borok, V., & Wong, H. (2008). Clustering analysis of seismicity and aftershock identification. Physical Review Letters, 101(1), 018501.CrossRefGoogle Scholar
  78. Zhuang, J. (2011). Next-day earthquake forecasts for the Japan region generated by the ETAS model. Earth, Planets and Space, 63(3), 5.  https://doi.org/10.5047/eps.2010.12.010.CrossRefGoogle Scholar
  79. Zhuang, J., Ogata, Y., & Vere-Jones, D. (2002). Stochastic declustering of space-time earthquake occurrences. Journal of the American Statistical Association, 97(458), 369–380.  https://doi.org/10.1198/016214502760046925.CrossRefGoogle Scholar
  80. Zhuang, J., Ogata, Y., & Vere-Jones, D. (2004). Analyzing earthquake clustering features by using stochastic reconstruction. Journal of Geophysical Research: Solid Earth, 109(B5), 1–17.  https://doi.org/10.1029/2003JB002879.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringKaradeniz Technical UniversityTrabzonTurkey
  2. 2.Department of StatisticsRazi UniversityKermanshahIran
  3. 3.Department of GeophysicsKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations