Advertisement

Multi-Data-Type Source Estimation for the 1992 Flores Earthquake and Tsunami

  • Ignatius Ryan PranantyoEmail author
  • Phil R. Cummins
Article
  • 69 Downloads

Abstract

We revisit the source of the 1992 Flores earthquake and tsunami using finite-fault inversion. We simultaneously invert teleseismic body and surface waves together with coseismic uplift/subsidence datasets. We then verify the inverted source against tsunami run-up heights along the northern coast of Flores Island and the only tide gauge recording of the tsunami. Our preferred source model provides a good fit to all the datasets, whereas previous models only explained a subset of the available data. We show that the fault geometry implies segmentation of the back-arc thrust system in the eastern Sunda Arc.

Keywords

Flores Island tsunami 1992 finite-fault source inversion tsunami hazard seismic hazard 

Notes

Acknowledgements

This work was partly supported by the Government of Australia’s Australian Awards Scholarship program. The high-resolution digital elevation model around Flores Island was provided by the Australia–Indonesia Facility for Disaster Reduction (AIFDR), which was supported by the Australian Department of Foreign Affairs and Trade’s Australian Aid program. The tsunami numerical simulation was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government. We also thank two reviewers, who provided rigorous comments on the paper.

Supplementary material

24_2018_2078_MOESM1_ESM.pdf (294 kb)
Supplementary material 1 (pdf 293 kB)
24_2018_2078_MOESM2_ESM.pdf (1.1 mb)
Supplementary material 2 (pdf 1086 kB)
24_2018_2078_MOESM3_ESM.pdf (55 kb)
Supplementary material 3 (pdf 54 kB)
24_2018_2078_MOESM4_ESM.pdf (397 kb)
Supplementary material 4 (pdf 396 kB)
24_2018_2078_MOESM5_ESM.pdf (588 kb)
Supplementary material 5 (pdf 587 kB)
24_2018_2078_MOESM6_ESM.pdf (56 kb)
Supplementary material 6 (pdf 55 kB)
24_2018_2078_MOESM7_ESM.pdf (161 kb)
Supplementary material 7 (pdf 161 kB)
24_2018_2078_MOESM8_ESM.pdf (32 kb)
Supplementary material 8 (pdf 32 kB)
24_2018_2078_MOESM9_ESM.pdf (393 kb)
Supplementary material 9 (pdf 393 kB)
24_2018_2078_MOESM10_ESM.pdf (238 kb)
Supplementary material 10 (pdf 238 kB)
24_2018_2078_MOESM11_ESM.pdf (33 kb)
Supplementary material 11 (pdf 32 kB)
24_2018_2078_MOESM12_ESM.pdf (166 kb)
Supplementary material 12 (pdf 166 kB)
24_2018_2078_MOESM13_ESM.pdf (470 kb)
Supplementary material 13 (pdf 470 kB)
24_2018_2078_MOESM14_ESM.pdf (268 kb)
Supplementary material 14 (pdf 267 kB)
24_2018_2078_MOESM15_ESM.pdf (32 kb)
Supplementary material 15 (pdf 32 kB)
24_2018_2078_MOESM16_ESM.txt (22 kb)
Supplementary material 16 (txt 22 kB)

References

  1. Aida, I. (1978). Reliability of a tsunami source model derived from fault parameters. Journal of Physics of the Earth, 26(1), 57–73.  https://doi.org/10.4294/jpe1952.26.57.CrossRefGoogle Scholar
  2. Audley-Charles, M. (2011). Tectonic post-collision processes in Timor. Geological Society London Special Publications, 355(1), 241–266.  https://doi.org/10.1144/SP355.12.CrossRefGoogle Scholar
  3. Baba, T., Cummins, P. R., Thio, H. K., & Tsushima, H. (2009). Validation and joint inversion of teleseismic waveforms for earthquake source models using deep ocean bottom pressure records: A case study of the 2006 Kuril megathrust earthquake. Pure and Applied Geophysics, 166(1–2), 55–76.CrossRefGoogle Scholar
  4. Baba, T., Takahashi, N., Kaneda, Y., Ando, K., Matsuoka, D., & Kato, T. (2015). Parallel implementation of dispersive tsunami wave modeling with a nesting algorithm for the 2011 Tohoku tsunami.  https://doi.org/10.1007/s00024-015-1049-2
  5. Beckers, J., & Lay, T. (1995). Very broadband seismic analysis of the 1992 Flores, Indonesia, earthquake (Mw = 7.9). Journal of Geophysical Research Solid Earth, 100(B9), 18179–18193.  https://doi.org/10.1029/95JB01689.CrossRefGoogle Scholar
  6. Benavente, R., & Cummins, P. R. (2013). Simple and reliable finite fault solutions for large earthquakes using the w-phase: The Maule (Mw= 8.8) and Tohoku (Mw= 9.0) earthquakes. Geophysical Research Letters, 40(14), 3591–3595.CrossRefGoogle Scholar
  7. Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems, 4, 3.  https://doi.org/10.1029/2001GC000252.CrossRefGoogle Scholar
  8. Breen, N. A., Silver, E. A., & Roof, S. (1989). The Wetar Back Arc Thrust Belt, eastern Indonesia: The effect of accretion against an irregularly shaped arc. Tectonics, 8(1), 85–98.  https://doi.org/10.1029/TC008i001p00085.CrossRefGoogle Scholar
  9. Ekström, G., Tromp, J., & Larson, E. W. (1997). Measurements and global models of surface wave propagation. Journal of Geophysical Research Solid Earth, 102(B4), 8137–8157.CrossRefGoogle Scholar
  10. Gonzalez, F., Sutisna, S., Hadi, P., Bernard, E., & Winarso, P.(1993). Some observations related to the Flores Island earthquake and tsunami. In: TSUNAMI, International Tsunami Symposium, Wakayama, JapanGoogle Scholar
  11. Griffin, J., Latief, H., Kongko, W., Harig, S., Horspool, N., Hanung, R., et al. (2015). An evaluation of onshore digital elevation models for modelling tsunami inundation zones. Frontiers in Earth Science, 3, 32.  https://doi.org/10.3389/feart.2015.00032.CrossRefGoogle Scholar
  12. Gusman, A., Tanioka, Y., MacInnes, B., & Tsushima, H. (2014). A methodology for near field tsunami inundation forecasting: Application to the 2011 Tohoku tsunami. Journal of Geophysical Research Solid Earth, 119(11), 8186–8206.CrossRefGoogle Scholar
  13. Gusman, A. R., & Tanioka, Y. (2014). W-phase inversion and tsunami inundation modeling for tsunami early warning: Case study for the 2011 Tohoku event. Pure and Applied Geophysics, 171(7), 1409–1422.CrossRefGoogle Scholar
  14. Hamilton, W. (1979). Tectonics of the Indonesian region (4th ed.). Washington: United States Government Printing Office.Google Scholar
  15. Hayes, G. (2017). Preliminary finite fault results for the Dec 12, 1992 Mw 7.7 -8.5100,121.8900 earthquake (version 1). https://earthquake.usgs.gov/earthquakes/eventpage/usp0005j5a
  16. Hidayat, D., Barker, J., & Satake, K. (1995). Modeling the seismic source and tsunami generation of the December 12, 1992 Flores Island, Indonesia, earthquake. Pure and Applied Geophysics, 144(3–4), 537–554.  https://doi.org/10.1007/BF00874382.CrossRefGoogle Scholar
  17. Hill, E. M., Borrero, J. C., Huang, Z., Qiu, Q., Banerjee, P., Natawidjaja, D. H., et al. (2012). The (2010) Mw 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. Journal of Geophysical Research Solid Earth, 117, 6.Google Scholar
  18. Imamura, F., & Kikuchi, M. (1994). Moment release of the 1992 Flores Island earthquake inferred from tsunami and teleseismic data. Science Tsunami Hazards, 12, 67–76.Google Scholar
  19. IRIS-Wilber (2018) Iris-wilber 3 dataset. www.iris.edu
  20. Johnson, J. M., Satake, K., Holdahl, S. R., & Sauber, J. (1996). The 1964 Prince William Sound earthquake: Joint inversion of tsunami and geodetic data. Journal of Geophysical Research Solid Earth, 101(B1), 523–532.CrossRefGoogle Scholar
  21. Kanamori, H., & Stewart, G. S. (1976). Mode of the strain release along the Gibbs fracture zone, Mid-Atlantic ridge. Physics of the Earth and Planetary Interiors, 11(4), 312–332.CrossRefGoogle Scholar
  22. Kikuchi, M., & Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72(2), 491–506.Google Scholar
  23. Kikuchi, M., & Kanamori, H. (1986). Inversion of complex body waves—II. Physics of the Earth and Planetary Interiors, 43(3), 205–222.CrossRefGoogle Scholar
  24. Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body waves—III. Bulletin of the Seismological Society of America, 81(6), 2335–2350.Google Scholar
  25. Konca, A. O., Hjorleifsdottir, V., Song, T. R. A., Avouac, J. P., Helmberger, D. V., Ji, C., et al. (2007). Rupture kinematics of the 2005 Mw 8.6 Nias–Simeulue earthquake from the joint inversion of seismic and geodetic data. Bulletin of the Seismological Society of America, 97(1A), S307–S322.CrossRefGoogle Scholar
  26. Koulali, A., Susilo, S., McClusky, S., Meilano, I., Cummins, P., Tregoning, P., et al. (2016). Crustal strain partitioning and the associated earthquake hazard in the Eastern Sunda-Banda Arc. Geophysical Research Letters, 43, 1943–1949.  https://doi.org/10.1002/2016GL067941.CrossRefGoogle Scholar
  27. Liu, P. L. F., Cho, Y. S., Briggs, M. J., Kanoglu, U., & Synolakis, C. E. (1995). Runup of solitary waves on a circular island. Journal of Fluid Mechanics, 302, 259–285.CrossRefGoogle Scholar
  28. McCaffrey, R., & Nabalek, J. (1984). The geometry of back arc thrusting along the eastern Sunda Arc, Indonesia: Constraints from earthquake and gravity data. Journal of Geophysical Research, 89(B7), 6171–6179.CrossRefGoogle Scholar
  29. Nakamura, M. (2009). Fault model of the 1771 Yaeyama earthquake along the Ryukyu trench estimated from the devastating tsunami. Geophysical Research Letters, 36, 19.  https://doi.org/10.1029/2009GL039730.CrossRefGoogle Scholar
  30. Nugroho, H., Harris, R., Lestariya, A. W., & Maruf, B. (2009). Plate boundary reorganization in the active Banda Arc-continent collision: Insights from new GPS measurements. Tectonophysics, 479(1–2), 52–65.CrossRefGoogle Scholar
  31. Okada, Y. (1985). Surface deformation due to shear. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  32. Olson, A. H., & Apsel, R. J. (1982). Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bulletin of the Seismological Society of America, 72(6A), 1969–2001.Google Scholar
  33. Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., et al. (2014). Openquake engine: An open hazard (and risk) software for the global earthquake model. Seismological Research Letters, 85(3), 692–702.CrossRefGoogle Scholar
  34. Sandiford, M. (2008). Seismic moment release during slab rupture beneath the Banda Sea. Geophysical Journal International, 174(2), 659–671.CrossRefGoogle Scholar
  35. Satake, K. (1987). Inversion of tsunami waveforms for the estimation of a fault heterogeneity: Method and numerical experiments. Journal of Physics of the Earth, 35(3), 241–254.CrossRefGoogle Scholar
  36. Satake, K. (1993). Depth distribution of coseismic slip along the Nankai trough, Japan, from joint inversion of geodetic and tsunami data. Journal of Geophysical Research Solid Earth, 98(B3), 4553–4565.CrossRefGoogle Scholar
  37. Silver, E. A., Breen, N. A., & Prasetyo, H. (1986). Multibeam study of the Flores Back-Arc thrust belt, Indonesia. Journal of Geophysical Research, 91(B3), 3489–3500.CrossRefGoogle Scholar
  38. Silver, E. A., Reed, D., & McCaffrey, R. (1983). Back arc thrusting in the Eastern Sunda arc, Indonesia: A consequence of arc-continent collision. Journal of Geophysical Research, 88(B9), 7429–7488.CrossRefGoogle Scholar
  39. Spakman, W., & Hall, R. (2010). Surface deformation and slab-mantle interaction during Banda arc subduction rollback. Nature Geoscience, 3, 562–566.  https://doi.org/10.1038/NGEO917.CrossRefGoogle Scholar
  40. Tanioka, Y., Satake, K., & Ruff, L. (1995). Total analysis of the 1993 Hokkaido Nansei-Oki earthquake using seismic wave, tsunami, and geodetic data. Geophysical Research Letters, 22(1), 9–12.CrossRefGoogle Scholar
  41. Trifunac, M. (1974). A three-dimensional dislocation model for the San Fernando, California, earthquake of February 9, 1971. Bulletin of the Seismological Society of America, 64(1), 149–172.Google Scholar
  42. Tsuji, Y., Matsutomi, H., Imamura, F., Takeo, M., Kawata, Y., Matsuyama, M., et al. (1995). Damage to coastal villages due to the 1992 Flores Island earthquake tsunami. Pure and Applied Geophysics, 144(3–4), 481–524.  https://doi.org/10.1007/BF00874380.CrossRefGoogle Scholar
  43. Watts, P., Grilli, S., Tappin, D. R., & Fryer, G. J. (2005). Tsunami generation by submarine mass failure II: Predictive equations and case studies. Journal of Waterway Port Coastal and Ocean Engineering, 131, 298–310.  https://doi.org/10.1061/ASCE)0733-950X(2005)131:6(298).CrossRefGoogle Scholar
  44. World Bank. (1993). Indonesia Flores earthquake reconstruction project. The World Bank: ReportGoogle Scholar
  45. Yeh, H., Imamura, F., Synolakis, C., Tsuji, Y., Liu, P., & Shi, S. (1993). The Flores Island tsunamis. EOS Transactions American Geophysical Union, 74(33), 369.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations