Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 4, pp 1731–1766 | Cite as

An Objective Criterion for Selection of the Best Option in Hansen’s Method for Paleostress Estimation from Homogeneous Fault-Slip Data

  • Kartik Bhatnagar
  • D. C. SrivastavaEmail author
  • P. K. Gupta
Article
  • 66 Downloads

Abstract

Hansen’s direct linear inversion method is a rapid and robust technique for paleostress estimation from fault-slip observations. The method uses six- and nine-dimensional spaces and requires a user judgement of the best solution from four possible options, i.e., the tensors 6D, 6Df, 9D and 9Df. We propose an objective criterion for selection of the best solution. Using each of the four possible options, as the reduced stress tensor, 6D, 6Df, 9D and 9Df, the criterion computes the slip vector on each fault plane in a given population of homogeneous fault-slip data. The option that gives minimum average angle between the computed slip vectors and the true or observed slip vectors on the corresponding fault planes is the best solution. The criterion is successfully tested on 236 synthetic and 5 natural examples representing a variety of stress states in different tectonic settings. One example of the natural fault-slip observations contains a vorticity component, whereas all other test examples are devoid of vorticity. In the triaxial stress states, two correct solutions are obtained, one of which is either 6D or 6Df, and the other is 9D or 9Df. In the stress states that are characterized by axial compression or axial extension, the correct solution is either 6D or 6Df and the use of nine-dimensional space fails to invert the observations. In the natural example that contains a vorticity component, only 9D gave the correct result.

Keywords

Paleostress striated faults vorticity slip vector moment method 

Notes

Acknowledgements

This study was supported by a grant from the Department of Science and Technology, Government of India to D. C. Srivastava. We are grateful to Rahul Dixit for help and rigorous testing of the method during the revision of the manuscript and to Arun Ojha for the critical reading of the revised manuscript. We are also grateful to the two reviewers for their erudite and constructive suggestions. Carlos Liesa, in particular, provided very useful suggestions that helped improve the manuscript considerably.

References

  1. Anderson, E. M. (1951). The dynamics of faulting (pp. 231–248). Edinburgh: Oliver & Boyd.Google Scholar
  2. Angelier, J. (1975). Sur l’analyse de measures recueillies dans des sites faillés: lùtilité dùne confrontation entre les méthodes dynamiques et cinematiques. Comptes Rendus de lÀcademie des Sciences, Paris, D281, 1805–1808.Google Scholar
  3. Angelier, J. (1979). Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56, T17–T26.CrossRefGoogle Scholar
  4. Angelier, J. (1984). Tectonic analysis of fault slip data set. Journal of Geophysical Research: Solid Earth, 89, 5835–5848.CrossRefGoogle Scholar
  5. Angelier, J. (1990). Inversion of field data in fault tectonics to obtain the regional stress—III. A new rapid direct inversion method by analytical means. Geophysical Journal International, 103, 363–376.CrossRefGoogle Scholar
  6. Angelier, J. (1994). Fault slip analysis and palaeostress reconstruction. In P. L. Hancock (Ed.), Continental deformation (pp. 53–101). Oxford: Pergamon Press.Google Scholar
  7. Angelier, J., Colletta, B., & Anderson, R. E. (1985). Neogene paleostress changes in the basin and range: A case study at Hoover Dam, Nevada-Arizona. Bulletin of Geological Society of America, 96, 347–1361.CrossRefGoogle Scholar
  8. Angelier, J., Lyberis, N., Le Pichon, X., Barrier, E., & Huchon, P. (1982a). The tectonic development of the Hellenic arc and the Sea of Crete: A synthesis. Tectonophysics, 86, 159–1196.CrossRefGoogle Scholar
  9. Angelier, J., Tarantola, A., Valette, B., & Manoussis, S. (1982b). Inversion of field data in fault tectonics to obtain the regional stress. I. Single phase fault populations: a new method of computing the stress tensor. Geophysical Journal of the Royal Astronomical Society, 69, 607–621.CrossRefGoogle Scholar
  10. Arlegui, L. E., Simón, J. L., Lisle, R. J., & Orife, T. (2005). Late Pliocene–Pleistocene stress field in the Teruel and Jiloca grabens (eastern Spain): Contribution of a new method of stress inversion. Journal of Structural Geology, 27, 693–705.CrossRefGoogle Scholar
  11. Armijo, R., Carey, E., & Cisternas, A. (1982). The inverse problem in microtectonics and the separation of tectonic phases. Tectonophysics, 82, 145–1160.CrossRefGoogle Scholar
  12. Bergerat, F. (1987). Stress fields in the European Platform at the time of Africa–Eurasia Collision. Tectonics, 6, 99–132.CrossRefGoogle Scholar
  13. Blenkinsop, T. G. (2006). Kinematic and dynamic fault slip analyses: implications from the surface rupture of the 1999 Chi–Chi, Taiwan, earthquake. Journal of Structural Geology, 28, 1040–1050.CrossRefGoogle Scholar
  14. Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96, 109–117.CrossRefGoogle Scholar
  15. Byerlee, J. D. (1978). Friction of rocks. Pure and Applied Geophysics, 116, 615–626.CrossRefGoogle Scholar
  16. Carey, E. (1976). Analyse numérique d’un modèle mécanique élémentaire appliqué à l’étuded’une population de failles: calcul d’un tenseurmoyen des contraintes à partir des stries de glissement, Theèe de.3èmecycle (pp. 1–1138). Orsay: Universite de Paris Sud.Google Scholar
  17. Carey, E., & Brunier, B. (1974). Analyse théorique et numérique dùnmod èlemécanique elementaire appliqué à létude dùn population de failles. Comptes Rendus Academy of Science, Paris, D, 279, 891–894.Google Scholar
  18. Delvaux, D., Levi, K., Kajara, R., & Sarota, J. (1992). Cenozoic paleostress and kinematic evolution of the Rukwa, North Malawi rift valley (East African system). Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 16, 383–406.Google Scholar
  19. Delvaux, D., & Sperner, B. (2003). Stress tensor inversion from fault kinematic indicators and focal mechanism data: The TENSOR program. In D. Nieuwland (Ed.), New insights into structural interpretation and modelling (Vol. 212, pp. 75–1100). London: Geological Society London, Special Publications.Google Scholar
  20. Etchecopar, A., Vasseur, G., & Daignieres, M. (1981). An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis. Journal of Structural Geology, 3, 51–65.CrossRefGoogle Scholar
  21. Fry, N. (1999). Striated faults: Visual appreciation of their constraint on possible paleostress tensors. Journal of Structural Geology, 21, 7–21.CrossRefGoogle Scholar
  22. Fry, N. (2001). Stress space: Striated faults, deformation twins, and their constraints on paleostress. Journal of Structural Geology, 23, 1–9.CrossRefGoogle Scholar
  23. Gapais, D., Cobbold, P. R., Bourgeois, O., & de Urreiztieta, Marc. (2000). Tectonic significance of fault-slip data. Journal of Structural Geology, 22, 881–888.CrossRefGoogle Scholar
  24. Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. Journal of Geophysical Research, 89, 9305–9320.CrossRefGoogle Scholar
  25. Hansen, J.-A. (2013). Direct inversion of stress, strain or strain rate including vorticity: A linear method of homogenous fault-slip data inversion independent of adopted hypothesis. Journal of Structural Geology, 51, 3–13.CrossRefGoogle Scholar
  26. Hardcastle, K. C., & Hills, L. S. (1991). Brute3 and SELECT: Quickbasic 4 programs for determination of stress tensor configurations and separation of heterogeneous populations of fault-slip data. Computers and Geosciences, 17, 23–143.CrossRefGoogle Scholar
  27. Hardebeck, J. L., & Hanksson, E. (2001). Stress orientations obtained from earthquake focal mechanisms: What are appropriate uncertainty estimates? Bulletin of the Seismological Society of America, 91, 250–262.CrossRefGoogle Scholar
  28. Homberg, J. C., Angelier, J., Bergerat, F., & Lacombe, O. (1997). Characterization of stress perturbations near major fault zones; insights from 2-D distinct-element numerical modelling and field studies (Jura Mountains). Journal of Structural Geology, 19, 703–718.CrossRefGoogle Scholar
  29. Huang, Q. (1988). Computer-based method to separate heterogeneous sets of fault-slip data into sub-sets. Journal of Structural Geology, 10, 297–1299.CrossRefGoogle Scholar
  30. Liesa, C. L., & Lisle, R. J. (2004). Reliability of methods to separate stress tensors from heterogeneous fault-slip data. Journal of Structural Geology, 26, 559–572.CrossRefGoogle Scholar
  31. Lisle, R. J., Orife, T. O., Arlegui, L., Liesa, C., & Srivastava, D. C. (2006). Favoured states of paleostress in the Earth’s crust: evidence from fault-slip data. Journal of Structural Geology, 28, 1051–1066.CrossRefGoogle Scholar
  32. Lisle, R. J., & Srivastava, D. C. (2004). Test of the frictional reactivation theory for faults and validity of fault-slip analysis. Geology, 32, 569–572.CrossRefGoogle Scholar
  33. Marrett, R., & Allmendinger, R. W. (1990). Kinematic analysis of fault-slip data. Journal of Structural Geology, 12, 973–986.CrossRefGoogle Scholar
  34. Marrett, R., & Peacock, D. C. P. (1999). Strain and stress. Journal of Structural Geology, 21, 1057–1063.CrossRefGoogle Scholar
  35. Michael, A. J. (1984). Determination of stress from slip data: Faults and folds. Journal of Geophysical Research, 89, 11517–111526.CrossRefGoogle Scholar
  36. Morris, A. P., Ferrill, D. A., & McGinnis, R. N. (2016). Using fault displacement and slip tendency to estimate stress states. Journal of Structural Geology, 83, 60–72.CrossRefGoogle Scholar
  37. Nemcok, M., & Lisle, R. J. (1995). A stress inversion procedure for polyphase fault/slip data sets. Journal of Structural Geology, 17, 1445–1453.CrossRefGoogle Scholar
  38. Otsubo, M., Sato, K., & Yamaji, A. (2006). Computerized identification of stress tensors determined from heterogeneous fault-slip data by combining the multiple inverse method and k-means clustering. Journal of Structural Geology, 28, 952–1956.CrossRefGoogle Scholar
  39. Riller, U., Clark, M. D., Daxberger, H., Doman, D., Lenauer, I., Plath, S., et al. (2017). Fault-slip inversions: Their importance in terms of strain, heterogeneity, and kinematics of brittle deformation. Journal of Structural Geology, 101, 80–95.CrossRefGoogle Scholar
  40. Rocher, M., Lacombe, O., Angelier, J., Deffontaines, B., & Verdier, F. (2000). Cenozoic folding and faulting in the South Aquitaine Basin (France); Insights from combined structural and paleostress analysis. Journal of Structural Geology, 22, 627–645.CrossRefGoogle Scholar
  41. Shan, J., & Fry, N. (2006). The moment method used to infer stress from fault/slip data in sigma space: invalidity and modification. Journal of Structural Geology, 28, 1208–1213.CrossRefGoogle Scholar
  42. Shan, J., Suen, H., & Lin, G. (2003). Separation of polyphase fault/slip data: An objective function algorithm based on hard division. Journal of Structural Geology, 25, 829–840.CrossRefGoogle Scholar
  43. Sperner, B., & Zweigel, P. (2010). A plea for more caution in fault-slip analysis. Tectonophysics, 481, 29–41.CrossRefGoogle Scholar
  44. Thakur, P., Srivastava, D. C., & Gupta, P. K. (2017). The genetic algorithm: A robust method for stress inversion. Journal of Structural Geology, 94, 227–239.CrossRefGoogle Scholar
  45. Tranos, M. D. (2015). TR method (TRM): A separation and stress inversion method for heterogeneous fault-slip data driven by Andersonian extensional and compressional stress regimes. Journal of Structural Geology, 79, 57–74.CrossRefGoogle Scholar
  46. Tranos, M. D. (2017). The use of stress tensor discriminator faults in separating heterogeneous fault-slip data with best-fit stress inversion methods. Journal of Structural Geology, 102, 168–178.CrossRefGoogle Scholar
  47. Twiss, R. J., Protzman, G. M., & Hurst, S. D. (1991). Theory of slickenline patterns based on the velocity gradient tensor and microrotation. Tectonophysics, 186, 215–239.CrossRefGoogle Scholar
  48. Twiss, R. J., & Unruh, J. R. (1998). Analysis of fault slip inversions: Do they constrain stress or strain rate? Journal of Geophysical Research, 103, 12205–12222.CrossRefGoogle Scholar
  49. Vandycke, S. (2002). Palaeostress records in Cretaceous formations in NW Europe: extensional and strike–slip events in relationships with Cretaceous–Tertiary inversion tectonics. Tectonophysics, 357, 119–136.CrossRefGoogle Scholar
  50. Vandycke, S., & Bergerat, F. (2001). Brittle tectonic structures and palaeostress analysis in the Isle of Wight, Wessex basin, southern UK. Journal of Structural Geology, 23, 393–406.CrossRefGoogle Scholar
  51. Wallace, R. E. (1951). Geometry of shearing stress and relation to faulting. Journal of Geology., 59, 118–130.CrossRefGoogle Scholar
  52. Will, T. M., & Powell, R. (1991). A robust approach to the calculation of paleostress fields from fault plane data. Journal of Structural Geology, 13, 813–821.CrossRefGoogle Scholar
  53. Wojtal, S. (1989). Measuring displacement gradients and strains in faulted rocks. Journal of Structural Geology, 11, 669–678.CrossRefGoogle Scholar
  54. Wojtal, S., & Pershing, J. (1991). Paleostresses associated with faults of large offset. Journal of Structural Geology, 13, 49–62.CrossRefGoogle Scholar
  55. Xu, P. (2004). Determination of regional stress tensors from fault–slip data. Geophysical Journal International, 157, 1316–1330.CrossRefGoogle Scholar
  56. Xu, X., Tang, S., & Lin, S. (2016). Paleostress inversion of fault-slip data from the Jurassic to Cretaceous Huangshan Basin and implications for the tectonic evolution of southeastern China. Journal of Geodynamics, 98, 31–52.CrossRefGoogle Scholar
  57. Yamaji, A. (2000a). The multiple inverse method: A new technique to separate stresses from heterogeneous fault-slip data. Journal of Structural Geology, 22, 441–452.CrossRefGoogle Scholar
  58. Yamaji, A. (2000b). The multiple inverse method applied to meso-scale faults in mid-Quaternary fore-arc sediments near the triple trench junction off central Japan. Journal of Structural Geology, 22, 429–440.CrossRefGoogle Scholar
  59. Žalohar, J., & Vrabec, M. (2007). Paleostress analysis of heterogeneous fault-slip data: The Gauss method. Journal of Structural Geology, 29, 1798–1810.CrossRefGoogle Scholar
  60. Žalohar, J., & Vrabec, M. (2010). Kinematics and dynamics of fault reactivation: The Cosserat approach. Journal of Structural Geology, 32, 15–26.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kartik Bhatnagar
    • 1
  • D. C. Srivastava
    • 1
    Email author
  • P. K. Gupta
    • 1
  1. 1.Department of Earth SciencesIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations