Advertisement

Dynamic Rupture and Seismic Radiation in a Damage–Breakage Rheology Model

  • Ittai Kurzon
  • Vladimir Lyakhovsky
  • Yehuda Ben-Zion
Article
  • 28 Downloads

Abstract

We present simulations of dynamic ruptures in a continuum damage–breakage rheological model and waves radiated by the ruptures and observed in the far field. The propagating rupture produces rock damage and granulation in the process zone ahead of the rupture front. An expansion–compaction process in the process zone leads to an isotropic source term, while shear motion that accumulates behind the propagating front produces a deviatoric source term and shear heating behind the rupture front. The process zone dissipation due to the damage–breakage mechanism, and the isotropic source component, significantly affect the S/P energy partitioning and the radiation patterns of the waves. The calculated S/P seismic energy ratio can be significantly lower than results of standard models with no damage–breakage mechanism and no source volume components. The P radiation pattern becomes more isotropic compared with the classical deviatoric solution, with increased lobes at 45° to the direction of rupture propagation. The S radiation pattern is affected more strongly by the damage–breakage process in the source volume, mainly within the process zone, and is significantly different from classical deviatoric results. The S waves propagate from the rupture front through the process zone (unlike the P waves), experiencing stronger dissipation, so the S radiation pattern is more affected than the P radiation pattern. Hence, analysis of P waves can provide more reliable results on rupture directivity than S waves.

Keywords

Fault zone rheology dynamic rupture deviatoric and isotropic source terms radiation patterns P/S energy ratio 

Notes

Acknowledgements

We thank A. Ilchev and O. Salomon for help with the simulations and acknowledge support by the US–Israel Bi-national Science Foundation (BSF Grant 2016043). The paper benefited from useful comments of two anonymous referees.

References

  1. Abercrombie, R. E. (1995). Earthquake source scaling relationships from − 1 to 5 ML using seismograms recorded at 2.5-km depth. Journal of Geophysical Research, 100, 24015–24036.CrossRefGoogle Scholar
  2. Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research, 30, 1217–1231.CrossRefGoogle Scholar
  3. Aki, K., & Richards, P. G. (1980). Quantitative seismology: theory and methods. New York: W. H. Freeman & Co.Google Scholar
  4. Alava, M. J., Nukala, P., & Zapperi, S. (2006). Statistical models of fracture. Advances in Physics, 55, 349–476. (10.1080).CrossRefGoogle Scholar
  5. Allix, O., & Hild, F. (2002). Continuum damage mechanics of materials and structures (p. 396). Amsterdam: Elsevier.Google Scholar
  6. Ancey, C., Coussot, P., & Evesque, P. A. (1999). A theoretical framework for very concentrated granular suspensions in steady simple shear flow. Journal of Rheology, 43, 1673–1699.CrossRefGoogle Scholar
  7. Andrews, D. J., & Ben-Zion, Y. (1997). Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research, 102, 553–571.CrossRefGoogle Scholar
  8. Ashby, M. F., & Sammis, C. G. (1990). The damage mechanics of brittle solids in compression. Pure and Applied Geophysics, 133(3), 489–521.CrossRefGoogle Scholar
  9. Bagnold, R. A. (1954). Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society London, 225, 49–63.CrossRefGoogle Scholar
  10. Barenblatt, G. I. (1996). Scaling, self-similarity and intermediate asymptotics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  11. Ben-Menahem, A., & Singh, S. J. (1981). Seismic waves and sources. New York: Springer.CrossRefGoogle Scholar
  12. Ben-Zion, Y., & Ampuero, J.-P. (2009). Seismic radiation from regions sustaining material damage. Geophysical Journal International, 178, 1351–1356.  https://doi.org/10.1111/j.1365-246X.2009.04285.x.CrossRefGoogle Scholar
  13. Ben-Zion, Y., Dahmen, K., Lyakhovsky, V., Ertas, D., & Agnon, A. (1999). Self-driven mode switching of earthquake activity on a fault system. Earth and Planetary Science Letters, 172, 11–21.CrossRefGoogle Scholar
  14. Bhat, H. S., Rosakis, A. J., & Sammis, C. G. (2012). A micromechanics based constitutive model for brittle failure at high strain rates. Journal of Applied Mechanics, 79(3), 031016.  https://doi.org/10.1115/1.4005897.CrossRefGoogle Scholar
  15. Boneh, Y., Chang, J.C., Lockner, D. A., Reches, Z. (2014). Evolution of wear and friction along experimental faults. Pure and Applied Geophysics, 171(11):3125–3141.CrossRefGoogle Scholar
  16. Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75, 4997–5009.CrossRefGoogle Scholar
  17. Calderoni, G., Rovelli, A., Ben-Zion, Y., & DiGiovambattista, R. (2015). Along-strike rupture directivity of earthquakes of the 2009 L’Aquila, central Italy, seismic sequence. Geophysical Journal International, 203, 399–415.  https://doi.org/10.1093/gji/ggv275.CrossRefGoogle Scholar
  18. Causse, M., Dalguer, L. A., & Mai, P. M. (2014). Variability of dynamic source parameters inferred from kinematic models of past earthquakes. Geophysical Journal International, 196, 1754–1769.  https://doi.org/10.1093/gji/ggt478.CrossRefGoogle Scholar
  19. Chaikin, P. M., & Lubensky, T. C. (2000). Principles of condensed matter physics (p. 720). Cambridge: Cambridge University Press.Google Scholar
  20. Charles, R. J. (1958). Static fatigue of glass. Journal of Applied Physics, 29, 1549–1560.CrossRefGoogle Scholar
  21. Chester, J. S., Chester, F. M., & Kronenberg, A. K. (2005). Fracture surface energy of the Punchbowl Fault, San Andreas system. Nature, 437, 133–135.CrossRefGoogle Scholar
  22. Chester, F. M., Evans, J. P., & Biegel, R. L. (1993). Internal structure and weakening mechanisms of the San Andreas fault. Journal of Geophysical Research, 98, 771–786.CrossRefGoogle Scholar
  23. Collins, J. A. (1993). Failure of materials in mechanical design. New York: Wiley.Google Scholar
  24. Cundall, P. A. (1989). Numerical experiments on localization in frictional materials. Ingenieur-Archiv, 59, 148–159.CrossRefGoogle Scholar
  25. Douglas, A., Hudson, J. A., & Pearce, R. G. (1988). Directivity and the Doppler effect. Bulletin of the Seismological Society of America, 78(3), 1367–1372.Google Scholar
  26. Dunn, J. E., & Serrin, J. (1985). On the thermodynamics of interstitial working. Archive for Rational Mechanics and Analysis, 88, 95–133.CrossRefGoogle Scholar
  27. Einav, I. (2007a). Breakage mechanics—Part I: Theory. Journal of the Mechanics and Physics of Solids, 55, 1274–1297.CrossRefGoogle Scholar
  28. Einav, I. (2007b). Breakage mechanics—Part II: Modeling granular materials. Journal of the Mechanics and Physics of Solids, 55, 1298–1320.CrossRefGoogle Scholar
  29. Forterre, Y., & Pouliquen, O. (2008). Flows of dense granular media. Annual Review of Fluid Mechanics, 40, 1–24.CrossRefGoogle Scholar
  30. Giovine, P. (1999). Nonclassical thermomechanics of granular materials. Mathematical Physics, Analysis and Geometry, 2, 179–196.CrossRefGoogle Scholar
  31. Grady, D. E., & Kipp, M. E. (1980). Continuum modeling of explosive fracture in oil shale. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 17, 147–157.CrossRefGoogle Scholar
  32. Griffith, A. A. (1920). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society London, 221, 582–593.Google Scholar
  33. Hamiel, Y., Liu, Y., Lyakhovsky, V., Ben-Zion, Y., & Lockner, D. (2004). A visco-elastic damage model with applications to stable and unstable fracturing. Geophysical Journal International, 159, 1–11.CrossRefGoogle Scholar
  34. Hansen, N. R., & Schreyer, H. L. (1994). A thermodynamically consistent framework for theories of elasticity coupled with damage. International Journal of Solids and Structures, 31, 359–389.CrossRefGoogle Scholar
  35. Haskell, N. A. (1964). Total energy and energy density of elastic wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54, 1811–1841.Google Scholar
  36. Henann, D. L., & Kamrin, K. (2013). A predictive, size-dependent continuum model for dense granular flows. Proceedings of the National Academy of Sciences of the United States of America, 110, 6730–6735.CrossRefGoogle Scholar
  37. Henann, D. L., & Kamrin, K. (2014). Continuum thermomechanics of the nonlocal granular rheology. International Journal of Plasticity, 60, 145–162.CrossRefGoogle Scholar
  38. Jop, P., Forterre, Y., & Pouliquen, O. (2006). A constitutive law for dense granular flows. Nature, 441, 727–730.  https://doi.org/10.1038/nature04801.CrossRefGoogle Scholar
  39. Kachanov, L. M. (1958). On the time to rupture under creep conditions. Izvestiya Akademii Nauk SSSR, OTN 8, 26–31. (in Russian).Google Scholar
  40. Kachanov, L. M. (1986). Introduction to continuum damage mechanics (p. 135). Leiden: Martinus Nijhoff.CrossRefGoogle Scholar
  41. Kane, D. L., Shearer, P. M., Goertz-Allmann, B. P., & Vernon, F. L. (2013). Rupture directivity of small earthquakes at Parkfield. Journal of Geophysical Research, 118, 212–221.  https://doi.org/10.1029/2012JB009675.CrossRefGoogle Scholar
  42. Kaneko, Y., & Shearer, P. M. (2015). Variability of seismic source spectra, estimated stress drop and radiated energy, derived from cohesive-zone models of symmetrical and asymmetrical circular and elliptical ruptures. Journal of Geophysical Research.  https://doi.org/10.1002/2014jb011642.CrossRefGoogle Scholar
  43. Knopoff, L. (1964). Q. Reviews of Geophysics, 2(4), 625–660.CrossRefGoogle Scholar
  44. Knopoff, L., & MacDonald, G. J. F. (1960). Models for acoustic loss in solids. Journal of Geophysical Research, 65, 2191–2197.CrossRefGoogle Scholar
  45. Krajcinovic, D. (1996). Damage mechanics. Amsterdam: Elsevier.Google Scholar
  46. Kurzon, I., Vernon, F. L., Rosenberger, A., & Ben-Zion, Y. (2014). Real-time automatic detectors of P and S waves using singular value decomposition. Bulletin of the Seismological Society of America, 104, 1696–1708.CrossRefGoogle Scholar
  47. Kwiatek, G., & Ben-Zion, Y. (2013). Assessment of P and S wave energy radiated from very small shear-tensile seismic events in a deep South Africa mine. Journal of Geophysical Research, 118, 3630–3641.  https://doi.org/10.1002/jgrb.50274.CrossRefGoogle Scholar
  48. Lengliné, O., & Got, J.-L. (2011). Rupture directivity of micro-earthquake sequences near Parkfield, California. Geophysical Research Letters, 38, L08310.  https://doi.org/10.1029/2011GL047303.CrossRefGoogle Scholar
  49. Lu, Y. B., Li, Q. M., & Ma, G. W. (2010). Numerical investigation of the dynamic compressive strength of rocks based on split Hopkinson pressure bar tests. International Journal of Rock Mechanics and Mining Sciences, 47, 829–838.CrossRefGoogle Scholar
  50. Lyakhovsky, V., & Ben-Zion, Y. (2014a). A continuum damage–breakage faulting model and solid-granular transitions. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-014-0845-4.CrossRefGoogle Scholar
  51. Lyakhovsky, V., & Ben-Zion, Y. (2014b). Damage–breakage rheology model and solid-granular transition near brittle instability. Journal of the Mechanics and Physics of Solids, 64, 184–197.CrossRefGoogle Scholar
  52. Lyakhovsky, V., Ben-Zion, Y., & Agnon, A. (1997). Distributed damage, faulting, and friction. Journal of Geophysical Research, 102, 27635–27649.CrossRefGoogle Scholar
  53. Lyakhovsky, V., Ben-Zion, Y., Ilchev, A., & Mendecki, A. (2016). Dynamic rupture in a damage–breakage rheology model. Geophysical Journal International, 206, 1126–1143.  https://doi.org/10.1093/gji/ggw183.CrossRefGoogle Scholar
  54. Lyakhovsky, V., Hamiel, Y., & Ben-Zion, Y. (2011). A non-local visco-elastic damage model and dynamic fracturing. Journal of the Mechanics and Physics of Solids, 59, 1752–1776.  https://doi.org/10.1016/j.jmps.2011.05.016.CrossRefGoogle Scholar
  55. Lyakhovsky, V., Ilchev, A., & Agnon, A. (2001). Modeling of damage and instabilities of rock mass by means of a non-linear rheological model. In G. van Aswegen, R. J. Durrheim, & W. D. Ortlepp (Eds.), Rockbursts and seismicity in mines: dynamic rock mass response to mining (pp. 413–420). Johannesburg: RaSiM-5, South African Institute of Mining and Metallurgy.Google Scholar
  56. Lyakhovsky, V., Podladchikov, Y., & Poliakov, A. (1993). Rheological model of a fractured solid. Tectonophysics, 226, 187–198.CrossRefGoogle Scholar
  57. Lyakhovsky, V., Zhu, W., & Shalev, E. (2015). Visco-poroelastic damage model for brittle-ductile failure of porous rocks. Journal of Geophysical Research: Solid Earth.  https://doi.org/10.1002/2014jb011805.CrossRefGoogle Scholar
  58. Madariaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66, 639–666.Google Scholar
  59. Main, I. G., Meredith, P. G., & Sammonds, P. R. (1992). Temporal variations in seismic event rate and b-values from stress corrosion constitutive laws. Tectonophysics, 211, 233–246.CrossRefGoogle Scholar
  60. Main, I. G., Meredith, P. G., & Sammonds, P. R. (1993). Application of a modified Griffith criterion to the evolution of fractal damage during compressional rock failure. Geophysical Journal International, 115, 367–380.CrossRefGoogle Scholar
  61. Meredith, P. G., & Atkinson, B. K. (1985). Fracture toughness and subcritical crack growth during high-temperature tensile deformation of Westerly granite and Black gabbro. Tectonophysics, 39, 33–51.Google Scholar
  62. Molnar, P., Tucker, B. E., & Brune, J. N. (1973). Corner frequencies of P and S waves and models of earthquake sources. Bulletin of the Seismological Society of America, 63, 2091–2104.Google Scholar
  63. Oth, A. (2013). On the characteristics of earthquake stress release variations in Japan. Earth and Planetary Science Letters, 377, 132–141.CrossRefGoogle Scholar
  64. Paris, P. C., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85, 528–534.CrossRefGoogle Scholar
  65. Peyrat, S., Olsen, K. B., & Madariaga, R. (2001). Dynamic modelling of the 1992 Landers earthquake. Journal of Geophysical Research, 106(B11), 26467–26482.  https://doi.org/10.1029/2001JB000205.CrossRefGoogle Scholar
  66. Poliakov, A., Cundall, P., Podladchikov, Y., & Lyakhovsky, V. (1993). An explicit inertial method for the simulation of viscoelastic flow: an evaluation of elastic effects on diapiric flow in two- and three-layers model. In K. E. Runcorn & D. Stone (Eds.), Dynamic modeling and flow in the earth and planets, proceedings of the NATO advanced study institute (p. 175). Dordrecht: Kluwer.Google Scholar
  67. Prieto, G., Shearer, P. M., Vernon, F. L., & Kilb, D. (2004). Earthquake source scaling and self–similarity estimation from stacking P and S spectra. Journal of Geophysical Research, 109, B08310.  https://doi.org/10.1029/2004JB003084.CrossRefGoogle Scholar
  68. Rabotnov, Y.N. (1959). A mechanism of a long time failure. In Y.N. Rabotnov (Ed.), Creep problems in structural members. USSR Acad. of Sci. Publ. (pp. 5–7), Amsterdam: North-Holland.Google Scholar
  69. Rabotnov, Y. N. (1988). Mechanics of deformable solids (p. 712). Moscow: Science.Google Scholar
  70. Rosenberger, A. (2010). Real-time ground motion analysis: Distinguishing P and S arrivals in a noisy environment. Bulletin of the Seismological Society of America, 100, 1252–1262.CrossRefGoogle Scholar
  71. Ross, Z. E., & Ben-Zion, Y. (2016). Towards reliable automated estimates of earthquake source properties from body wave spectra. Journal of Geophysical Research, 121, 4390–4407.  https://doi.org/10.1002/2016JB013003.CrossRefGoogle Scholar
  72. Sammis, C. G., Rosakis, A. J., & Bhat, H. S. (2009). Effects of off-fault damage on earthquake rupture propagation: experimental studies. Pure and Applied Geophysics, 166, 1629–1648.  https://doi.org/10.1007/s00024-009-0512-3.CrossRefGoogle Scholar
  73. Sato, T., & Hirasawa, T. (1973). Body wave spectra from propagating shear cracks. Journal of Physics of the Earth, 21, 415–432.CrossRefGoogle Scholar
  74. Savage, J. C. (1972). Relation of corner frequency to fault dimensions. Journal of Geophysical Research, 77, 3788–3795.CrossRefGoogle Scholar
  75. Savage, S. B. (1984). The mechanics of rapid granular flows. Advances in Applied Mechanics, 24, 289–366.CrossRefGoogle Scholar
  76. Savage, S. B. (1998). Analyses of slow high-concentration flows of granular materials. Journal of Fluid Mechanics, 377, 1–26.CrossRefGoogle Scholar
  77. Shearer, P. M. (2009). Introduction to seismology (p. 396). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  78. Shi, Z., & Ben-Zion, Y. (2009). Seismic radiation from tensile and shear point dislocations between similar and dissimilar solids. Geophysical Journal International, 179, 444–458.  https://doi.org/10.1111/j.1365-246X.2009.04299.x.CrossRefGoogle Scholar
  79. Shlomai, H., & Fineberg, J. (2016). The structure of slip-pulses and supershear ruptures driving slip in bi-material friction. Nature Communications, 7, 11787.  https://doi.org/10.1038/ncomms11787.CrossRefGoogle Scholar
  80. Suzuki, T. (2013). Damage-tensor-based nondimensional parameters governing secondary faulting behavior. Tectonophysics, 600, 205–216.CrossRefGoogle Scholar
  81. Thomas, M. Y., & Bhat, H. S. (2018). Dynamic evolution of off-fault medium during an earthquake: A micromechanics based model. Geophysical Journal International, 214, 1267–1280.CrossRefGoogle Scholar
  82. Trugman, D. T., & Shearer, P. M. (2017). Application of an improved spectral decomposition method to examine earthquake source scaling in southern California. Journal of Geophysical Research.  https://doi.org/10.1002/2017jb013971.CrossRefGoogle Scholar
  83. Turcotte, D. L., Newman, W. I., & Shcherbakov, R. (2003). Micro and macroscopic models of rock fracture. Geophysical Journal International, 152, 718–728.CrossRefGoogle Scholar
  84. Valanis, K. C. (1990). A theory of damage in brittle materials. Engineering Fracture Mechanics, 36, 403–416.CrossRefGoogle Scholar
  85. Vavryčuk, V. (2001). Inversion for parameters of tensile earthquakes. Journal of Geophysical Research, 106(B8), 16339–16355.  https://doi.org/10.1029/2001JB000372.CrossRefGoogle Scholar
  86. Veveakis, E., & Regenauer-Lieb, K. (2014). The fluid dynamics of solid mechanical shear zones. Pure and Applied Geophysics, 171, 3159–3174.CrossRefGoogle Scholar
  87. Wang, Z., Ning, J., & Ren, H. (2018). Frequency characteristics of the released stress wave by propagating cracks in brittle materials. Theoretical and Applied Fracture Mechanics.  https://doi.org/10.1016/j.tafmec.2018.04.004.CrossRefGoogle Scholar
  88. Weertman, J. (1980). Unstable slippage across a fault that separates elastic media of different elastic constants. Journal of Geophysical Research, 85, 1455–1461.CrossRefGoogle Scholar
  89. Xu, S., Ben-Zion, Y., Ampuero, J.-P., & Lyakhovsky, V. (2015). Dynamic ruptures on a frictional interface with off-fault brittle damage: Feedback mechanisms and effects on slip and near-fault motion. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-014-0923-7.CrossRefGoogle Scholar
  90. Yang, W., Peng, Z., & Ben-Zion, Y. (2009). Variations of strain-drops of aftershocks of the 1999 İzmit and Düzce earthquakes around the Karadere-Düzce branch of the North Anatolian Fault. Geophysical Journal International, 177, 235–246.  https://doi.org/10.1111/j.1365-246X.2009.04108.x.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Geological Survey of IsraelJerusalemIsrael
  2. 2.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations