Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 4, pp 1467–1485 | Cite as

Effective Stress Coefficient for Seismic Velocities in Carbonate Rocks: Effects of Pore Characteristics and Fluid Types

  • Gautier NjiekakEmail author
  • Douglas R. Schmitt
Article
  • 102 Downloads

Abstract

The concept of effective stress is key for understanding the dependence of rock elastic and compaction behaviors on stress and pore-fluid pressure. Previous studies on the concept largely used data acquired on siliciclastic rocks. Carbonate rocks, however, display elastic and compaction behaviors that can be very different than those of siliciclastic rocks. For example, applying most velocity-to-pore-pressure transforms in the context of carbonate reservoirs can be quite challenging. Our study used an experimental approach (a disequilibrium compaction scenario) to assess effective stress coefficient (n) for velocities in three carbonate samples displaying comparable porosities but different dominant pore types (in terms of shape and compliance). Different saturating fluids (nitrogen and distilled water) were used, one at a time, which allowed us to compare both pore and fluid type effects on the coefficient n between these rocks. We found that n is generally bounded by unity. The exception is with nVs (n derived from shear wave velocities) obtained under nitrogen-saturated conditions; nVs is higher than 1 on the three studied samples. Under nitrogen-saturated conditions, the less compliant the main pore types in a given rock are, the higher the value of nVs is. Higher-than-unity values of nVs indicate a deviation from the behavior predicted by existing theories. This could stem from (i) the fact that theoretical analyses assume a pore fluid whose properties are not comparable to those of nitrogen and/or (ii) the way the bulk volumetric strain (a main factor in elastic wave propagation) is incorporated into those theories.

Keywords

Effective stress coefficient ultrasonic measurement elastic wave velocity carbonate rock porosity pore space stiffness 

Notes

Acknowledgements

We acknowledge (1) Carbon Management Canada that provided a research grant to Dr. Gautier Njiekak and (2) NSERC and the Canada Research Chair program that supported the development of the measurement system. The samples were provided by the Saskatchewan Core Repository. We thank Randolf S. Kofman for his help in the laboratory and Dr. Tobias Mueller for helpful conversations and comments. We also thank the editor and the anonymous reviewer whose comments helped improve the manuscript.

References

  1. Al-Tahini, A. M., Abousleiman, Y. N., & Brumley, J. L. (2005). Acoustic and Quasistatic Laboratory Measurement and Calibration of the Pore Pressure Prediction Coefficient in the Poroelastic Theory. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.  https://doi.org/10.2118/95825-MS.
  2. Baechle, G. T., Eberli, G. P., Weger, R. J., & Massaferro, J. L. (2009). Changes in dynamic shear moduli of carbonate rocks with fluid substitution. Geophysics, 74(3), E135–E147.  https://doi.org/10.1190/1.3111063.CrossRefGoogle Scholar
  3. Batzle, M., & Wang, Z. (1992). Seismic properties of pore fluids. Geophysics, 57(11), 1396–1408.  https://doi.org/10.1190/1.1443207.CrossRefGoogle Scholar
  4. Berryman, J. G. (1992). Effective stress for transport properties of inhomogeneous porous rock. Journal of Geophysical Research: Solid Earth, 97(B12), 17409–17424.  https://doi.org/10.1029/92JB01593.CrossRefGoogle Scholar
  5. Berryman, J. G. (1993). Effective-stress rules for pore-fluid transport in rocks containing two minerals. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 1165–1168. Retrieved from http://www.sciencedirect.com/science/article/pii/014890629390087T.
  6. Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.  https://doi.org/10.1063/1.1712886.
  7. Biot, M. A. (1956a). Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. The Journal of the Acoustical Society of America, 28(2), 179–191.  https://doi.org/10.1121/1.1908241.CrossRefGoogle Scholar
  8. Biot, M. A. (1956b). Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. The Journal of the Acoustical Society of America, 28(2), 168–178.  https://doi.org/10.1121/1.1908239.CrossRefGoogle Scholar
  9. Bishop, A. W., & Blight, G. E. (1963). Some aspects of effective stress in saturated and partly saturated soils. Géotechnique, 13(3), 177–197.  https://doi.org/10.1680/geot.1963.13.3.177.CrossRefGoogle Scholar
  10. Blöcher, G., Reinsch, T., Hassanzadegan, A., Milsch, H., & Zimmermann, G. (2014). Direct and indirect laboratory measurements of poroelastic properties of two consolidated sandstones. International Journal of Rock Mechanics and Mining Sciences, 67, 191–201.  https://doi.org/10.1016/j.ijrmms.2013.08.033.CrossRefGoogle Scholar
  11. Boutéca, M., & Guéguen, Y. (1999). Mechanical Properties of Rocks: Pore Pressure and Scale Effects. Oil and Gas Science and Technology, 54(6), 703–714. Retrieved from https://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/1999/06/bouteca_v54n6.
  12. Bowers, G. L. (1995). Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction. SPE Drilling and Completions, 10, 89–95.CrossRefGoogle Scholar
  13. Brandt, H. (1955). A study of the speed of sound in porous granular media. Journal of Applied Mechanics, 22, 479–486.Google Scholar
  14. Carmichael, R. S. (1989). Practical handbook of physical properties of rocks and minerals. Boca Raton, FL: CRC Press Inc.Google Scholar
  15. Christensen, N. I., & Wang, H. F. (1985). The Influence of pore pressure and confining pressure on dynamic elastic properties of Berea sandstone. Geophysics, 50(2), 207–213.  https://doi.org/10.1190/1.1441910.CrossRefGoogle Scholar
  16. Ciz, R., Siggins, A. F., Gurevich, B., & Dvorkin, J. (2008). Influence of microheterogeneity on effective stress law for elastic properties of rocks. Geophysics, 73(1), E7–E14.  https://doi.org/10.1190/1.2816667.CrossRefGoogle Scholar
  17. den Boer, L., Sayers, C. M., Noeth, S., Hawthorn, A., Hooyman, P. J., & Smith, M. (2011). Using Tomographic Seismic Velocities to Understand Subsalt Overpressure Drilling Risks in the Gulf of Mexico. In Offshore Technology Conference. Offshore Technology Conference.  https://doi.org/10.4043/21546-MS.
  18. Detournay, E., & Cheng, A.-D. (1988). Poroelastic response of a borehole in a non-hydrostatic stress field. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 25(3), 171–182.  https://doi.org/10.1016/0148-9062(88)92299-1.CrossRefGoogle Scholar
  19. Dodds, K. J., Dewhurst, D. N., Siggins, A. F., Ciz, R., Urosevic, M., Gurevich, B., et al. (2007). Experimental and theoretical rock physics research with application to reservoirs, seals and fluid processes. Journal of Petroleum Science and Engineering, 57(1–2), 16–36.  https://doi.org/10.1016/J.PETROL.2005.10.018.CrossRefGoogle Scholar
  20. Eberhart-Phillips, D., Han, D.-H., & Zoback, M. D. (1989). Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 54(1), 82–89.  https://doi.org/10.1190/1.1442580.CrossRefGoogle Scholar
  21. Eberli, G. P., Baechle, G. T., Anselmetti, F. S., & Incze, M. L. (2003). Factors controlling elastic properties in carbonate sediments and rocks. The Leading Edge, 22(7), 654–660.  https://doi.org/10.1190/1.1599691.CrossRefGoogle Scholar
  22. Fjaer, E., Holt, R. M., Horsrud, P., Raaen, A. M., & Risnes, R. (2008). Geological aspects of petroleum related rock mechanics, 2nd Edition. Developments in petroleum science (vol. 53). Elsevier.  https://doi.org/10.1016/S0376-7361(07)53003-7.
  23. Gassmann, F. (1951). Elasticity of porous media: Uber die Elastizitat poroser Medien. Zurich: Vierteljahrsschrift der Naturforschenden Gesselschaft.Google Scholar
  24. Geertsma, J. (1957). The effect of fluid pressure decline on volumetric changes of porous rocks. Petroleum Transactions of AIME, 210, 331–340.Google Scholar
  25. Gurevich, B. (2004). A simple derivation of the effective stress coefficient for seismic velocities in porous rocks. Geophysics, 69(2), 393–397.  https://doi.org/10.1190/1.1707058.CrossRefGoogle Scholar
  26. Hettema, M. H. H., & de Pater, C. J. (1998). The poromechanical behaviour of Felser sandstone: Stress- and temperature-dependent. In SPE/ISRM Rock Mechanics in Petroleum Engineering: Society of Petroleum Engineers.  https://doi.org/10.2118/47270-MS.Google Scholar
  27. Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-33144479510&partnerID=40&md5=f3fca9af23b090ae14c41f51eb28f185.
  28. Hofmann, R., Xu, X., Batzle, M. L., Prasad, M., Furre, A.-K., & Pillitteri, A. (2005). Effective pressure or what is the effect of pressure? The Leading Edge, 24(12), 1256–1260.  https://doi.org/10.1190/1.2149644.CrossRefGoogle Scholar
  29. Hornby, B. E. (1996). An experimental investigation of effective stress principles for sedimentary rocks. Retrieved from https://www.onepetro.org/conference-paper/SEG-1996-1707.
  30. Lemmon, E. W., McLinden, M. O., & Friend, D. G. (2011). In P. J. Linstrom, W. G. Mallard (Eds.), Thermophysical properties of fluid systems in NIST chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899. http://webbook.nist.gov (retrieved 2008–2011).
  31. Müller, T. M., & Sahay, P. N. (2016). Biot coefficient is distinct from effective pressure coefficient. Geophysics, 81(4), L27–L33.  https://doi.org/10.1190/geo2015-0625.1.CrossRefGoogle Scholar
  32. Njiekak, G., & Schmitt, D. R. (2014). Pore geometry and pore-fluid types: Effects on seismic properties of carbonate rocks under a compaction disequilibrium scenario. In GeoConvention 2014. Calgary, Canada.Google Scholar
  33. Njiekak, G., Schmitt, D. R., Yam, H., & Kofman, R. S. (2013). CO2 rock physics as part of the Weyburn–Midale geological storage project. International Journal of Greenhouse Gas Control, 16, Supple(0), S118–S133.  https://doi.org/10.1016/j.ijggc.2013.02.007.
  34. Nur, A., Byerlee, J. D. (1971). An exact effective stress law for elastic deformation of rock with fluids. Journal of Geophysical Research, 76(26), 6414–6419.  https://doi.org/10.1029/JB076i026p06414.CrossRefGoogle Scholar
  35. Omdal, E., Madland, M. V., Breivik, H., Næss, K. E., Korsnes, R. I., Hiorth, A., & Kristiansen, T. G. (2009). Experimental investigation of the effective stress coefficient for various high porosity outcrop chalks. Retrieved from https://www.onepetro.org/conference-paper/ARMA-09-118.
  36. Prasad, M., & Manghnani, M. H. (1997). Effects of pore and differential pressure on compressional wave velocity and quality factor in Berea and Michigan sandstones. Geophysics, 62(4), 1163–1176.  https://doi.org/10.1190/1.1444217.CrossRefGoogle Scholar
  37. Rasolofosaon, P. N. J., & Zinszner, B. (2012). Experimental verification of the petroelastic model in the laboratory—Fluid substitution and pressure effects. Oil and Gas Science and Technology, 67(2), 303–318.  https://doi.org/10.2516/ogst/2011167.CrossRefGoogle Scholar
  38. Robin, P.-Y. F. (1973). Note on effective pressure. Journal of Geophysical Research, 78(14), 2434–2437. Retrieved from http://dx.doi.org/10.1029/JB078i014p02434.
  39. Sahay, P. N. (2013). Biot constitutive relation and porosity perturbation equation. Geophysics, 78(5), L57–L67.  https://doi.org/10.1190/geo2012-0239.1.CrossRefGoogle Scholar
  40. Sayers, C. M. (2010). Geophysics under stress. Society of Exploration Geophysicists and European Association of Geoscientists and Engineers.  https://doi.org/10.1190/1.9781560802129.
  41. Sharma, R., Prasad, M., Batzle, M., & Vega, S. (2013). Sensitivity of flow and elastic properties to fabric heterogeneity in carbonates. Geophysical Prospecting, 61(2), 270–286.  https://doi.org/10.1111/1365-2478.12030.CrossRefGoogle Scholar
  42. Siggins, A. F., & Dewhurst, D. N. (2003). Saturation, pore pressure and effective stress from sandstone acoustic properties. Geophysical Research Letters, 30(2).  https://doi.org/10.1029/2002GL016143.
  43. Terzaghi, K. (1923). Die Berechnung der Durchlassigkeitsziffer des Tones aus Dem Verlauf der Hidrodynamichen Span-nungserscheinungen Akademie der Wissenschaften in Wien”, Mathematish-Naturwissen-Schaftiliche Klasse. Akademie Der Wissenschaften in Wien. Sitzungsberichte. Mathematisch Naturwissenschaftliche Klasse, Abt., 2A, 132, 125–138.Google Scholar
  44. Todd, T., & Simmons, G. (1972). Effect of pore pressure on the velocity of compressional waves in low-porosity rocks. Journal of Geophysical Research, 77(20), 3731–3743. Retrieved from  https://doi.org/10.1029/JB077i020p03731.
  45. Wang, Z. (1997). Seismic properties of carbonate rocks. In I. Palaz & K. J. Marfurt (Eds.), Carbonate Seismology: Geophysical Developments. Google Scholar
  46. Wang, H. (2000). Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press. Retrieved from https://press.princeton.edu/titles/7006.html.
  47. Wu, B. (1999). Evaluation of the Biot effective stress coefficient by different experimental methods and implication in sand production prediction. In Proceedings of the International Symposium on Coupled Phenomena in Civil, Mining and Petroleum Engineering (pp. 59–75).Google Scholar
  48. Wyllie, M. R. J., Gregory, A. R., & Gardner, G. H. F. (1958). An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, XXIII(3), 459–493.  https://doi.org/10.1190/1.1438493.
  49. Zhang, J. (2011). Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth-Science Reviews, 108(1–2), 50–63.  https://doi.org/10.1016/J.EARSCIREV.2011.06.001.CrossRefGoogle Scholar
  50. Zimmerman, R. W. (1991). Compressibility of sandstones. Developments in Petroleum Science (Vol. 29). Elsevier, Amsterdam.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics, Institute for Geophysical Research, CCIS 4-183University of AlbertaEdmontonCanada
  2. 2.Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations