Pure and Applied Geophysics

, Volume 176, Issue 4, pp 1767–1784 | Cite as

Comparisons of Gauge, TMPA and IMERG Products for Monsoon and Tropical Cyclone Precipitation in Southern China

  • Fengjiao Chen
  • Hao HuangEmail author


The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM) Mission (IMERG) products are compared against 447 quality-controlled rain gauges in southern China (SC) during summer (May to August) for the period 2014–2016. The differences of TMPA and IMERG in measuring the monsoon and tropical cyclone (TC) precipitation, considering the mean spatial patterns, and rainfall intensities are evaluated quantitatively. Statistical analysis shows that IMERG has much higher correlations of precipitation frequency (PF) with gauge observations for monsoon and TC precipitation. However, both satellite-based products show much poorer capability in estimating conditional rainfall and PF for TC precipitation, especially for estimating large conditional rainfall in TC systems. The capability of capturing the precipitation events at different rainfall intensities decreases with the increase of rainfall threshold for both monsoon and TC precipitation. Generally, IMERG exhibits a superior ability to detect precipitation at different rainfall intensities than TMPA. In depicting the diurnal cycles, IMERG shows a much better performance in estimating rainfall and PF for monsoon precipitation than TMPA by revealing the comparable diurnal amplitudes to the rain gauges, whereas TMPA fails to accurately estimate the early morning rainfall and PF. As a successor to TMPA, IMERG is a reliable source of precipitation estimates for future studies on precipitation meteorology.


IMERG TMPA monsoon precipitation TC precipitation 



We are grateful to the NASA Goddard Space Flight Center’s Mesoscale Atmospheric Processes Laboratory and Precipitation Processing System (PPS) for providing the TMPA and IMERG data. The rain gauge data were provided by CMA. This work has been jointly supported by Natural Science Foundation of Anhui Province, China (Grant 1808085MD99), National Natural Science Foundation of China (Grant 41805023) and the Masters and Doctor Fund of Anhui Meteorological Bureau (Grant RC201701).


  1. Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111(D5), D05109.CrossRefGoogle Scholar
  2. Asong, Z., Razavi, S., Wheater, H., & Wong, J. (2017). Evaluation of integrated multisatellite retrievals for GPM (IMERG) over Southern Canada against ground precipitation observations: a preliminary assessment. Journal of Hydrometeorology, 18(4), 1033–1050.CrossRefGoogle Scholar
  3. Chen, Y., Ebert, E. E., Walsh, K. J., & Davidson, N. E. (2013). Evaluation of TMPA 3B42 daily precipitation estimates of tropical cyclone rainfall over Australia. Journal of Geophysical Research, 118(21), 11966–11978.Google Scholar
  4. Chen, F., & Fu, Y. (2015). Contribution of tropical cyclone rainfall at categories to total precipitation over the Western North Pacific from 1998 to 2007. Science China Earth Sciences, 58(11), 2015–2025.CrossRefGoogle Scholar
  5. Chen, G., Sha, W., & Iwasaki, T. (2009). Diurnal variation of precipitation over southeastern China: spatial distribution and its seasonality. Journal of Geophysical Research, 114(D13), D13103.CrossRefGoogle Scholar
  6. Dai, A., Lin, X., & Hsu, K.-L. (2007). The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low-and mid-latitudes. Climate Dynamics, 29(7–8), 727–744.CrossRefGoogle Scholar
  7. Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597.CrossRefGoogle Scholar
  8. Deng, X., Tie, X., Wu, D., Zhou, X., Bi, X., Tan, H., et al. (2008). Long-term trend of visibility and its characterizations in the Pearl River Delta (PRD) region. China Atmospheric Environment, 42(7), 1424–1435. Scholar
  9. Ebert, E. E., Janowiak, J. E., & Kidd, C. (2007). Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bulletin of the American Meteorological Society, 88(1), 47–64.CrossRefGoogle Scholar
  10. Fengjin, X., & Ziniu, X. (2010). Characteristics of tropical cyclones in China and their impacts analysis. Natural Hazards, 54(3), 827–837.CrossRefGoogle Scholar
  11. Fischer, E., & Knutti, R. (2014). Detection of spatially aggregated changes in temperature and precipitation extremes. Geophysical Research Letters, 41(2), 547–554.CrossRefGoogle Scholar
  12. Fu, Y., Chen, F., Liu, G., Yang, Y., Yuan, R., Li, R., et al. (2016). Recent trends of summer convective and stratiform precipitation in mid-eastern China. Scientific Reports, 5, 6.Google Scholar
  13. Hong, Y., Hsu, K.-L., Moradkhani, H., & Sorooshian, S. (2006). Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resources Research, 42(8), W08421.CrossRefGoogle Scholar
  14. Huffman, G. J., Adler, R. F., Bolvin, D. T., & Nelkin, E. J. (2010). The TRMM multi-satellite precipitation analysis (TMPA). In Satellite rainfall applications for surface hydrology (pp. 3–22). Heidelberg: Springer.CrossRefGoogle Scholar
  15. Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., et al. (2014). NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD), NASA/GSFC, Greenbelt, MD, USA.Google Scholar
  16. Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., et al. (2007). The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55.CrossRefGoogle Scholar
  17. Iguchi, T., Kozu, T., Kwiatkowski, J., Meneghini, R., Awaka, J., Okamoto, K., et al. (2009). Uncertainties in the Rain Profiling Algorithm for the TRMM Precipitation Radar (1. Precipitation Radar (PR), Precipitation Measurements from Space). Journal of the Meteorological Society of Japan, 87(3), 1–30.CrossRefGoogle Scholar
  18. Jiang, Z., Zhang, D.-L., Xia, R., & Qian, T. (2017). Diurnal Variations of Presummer Rainfall over Southern China. Journal of Climate, 30(2), 755–773.CrossRefGoogle Scholar
  19. Kidd, C., & Levizzani, V. (2011). Status of satellite precipitation retrievals. Hydrology and Earth System Sciences, 15(4), 1109–1116.CrossRefGoogle Scholar
  20. Kim, K., Park, J., Baik, J., & Choi, M. (2017). Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmospheric Research, 187, 95–105.CrossRefGoogle Scholar
  21. Li, J., Yu, R., & Zhou, T. (2008). Seasonal variation of the diurnal cycle of rainfall in southern contiguous China. Journal of Climate, 21(22), 6036–6043.CrossRefGoogle Scholar
  22. Liu, P., & Fu, Y. (2010). Climatic characteristics of summer convective and stratiform precipitation in southern China based on measurements by TRMM precipitation radar. Chinese J Atmos Sci, 34, 802–814.Google Scholar
  23. Liu, R., Liu, S. C., Cicerone, R. J., Shiu, C.-J., Li, J., Wang, J., et al. (2015). Trends of extreme precipitation in eastern China and their possible causes. Advances in Atmospheric Sciences, 32(8), 1027.CrossRefGoogle Scholar
  24. Liu, C., Zipser, E. J. (2008). Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations. Geophysical Research Letters, 35(4), L04819. Scholar
  25. Luo, Y., Wang, H., Zhang, R., Qian, W., & Luo, Z. (2013). Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River Basin. Journal of Climate, 26(1), 110–132.CrossRefGoogle Scholar
  26. Manz, B., Páez-Bimos, S., Horna, N., Buytaert, W., Ochoa-Tocachi, B., Lavado-Casimiro, W., et al. (2017). Comparative ground validation of IMERG and TMPA at variable spatio-temporal scales in the tropical andes. Journal of Hydrometeorology, 18, 2469–2489.CrossRefGoogle Scholar
  27. Mehran, A., & AghaKouchak, A. (2013). Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrological Processes, 28(4), 2262–2270. Scholar
  28. Mei, Y., Nikolopoulos, E. I., Anagnostou, E. N., & Borga, M. (2016). Evaluating satellite precipitation error propagation in runoff simulations of mountainous basins. Journal of Hydrometeorology, 17(5), 1407–1423.CrossRefGoogle Scholar
  29. Min, S.-K., Zhang, X., Zwiers, F. W., & Hegerl, G. C. (2011). Human contribution to more-intense precipitation extremes. Nature, 470(7334), 378–381.CrossRefGoogle Scholar
  30. Nijssen, B., & Lettenmaier, D. P. (2004). Effect of precipitation sampling error on simulated hydrological fluxes and states: anticipating the Global Precipitation Measurement satellites. Journal of Geophysical Research, 109(D2), D02103.CrossRefGoogle Scholar
  31. Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068–1072.CrossRefGoogle Scholar
  32. Oliveira, R., Maggioni, V., Vila, D., & Morales, C. (2016). Characteristics and diurnal cycle of GPM rainfall estimates over the central amazon region. Remote Sensing, 8(7), 544.CrossRefGoogle Scholar
  33. Prakash, S., Mitra, A. K., Pai, D., & AghaKouchak, A. (2016). From TRMM to GPM: How well can heavy rainfall be detected from space? Advances in Water Resources, 88, 1–7.CrossRefGoogle Scholar
  34. Sharifi, E., Steinacker, R., & Saghafian, B. (2016). Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sensing, 8(2), 135.CrossRefGoogle Scholar
  35. Su, F., Hong, Y., & Lettenmaier, D. P. (2008). Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. Journal of Hydrometeorology, 9(4), 622–640.CrossRefGoogle Scholar
  36. Tang, G., Zeng, Z., Long, D., Guo, X., Yong, B., Zhang, W., et al. (2016). Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7? Journal of Hydrometeorology, 17(1), 121–137.CrossRefGoogle Scholar
  37. Tapiador, F. J., Turk, F. J., Petersen, W., Hou, A. Y., García-Ortega, E., Machado, L. A., et al. (2012). Global precipitation measurement: methods, datasets and applications. Atmospheric Research, 104, 70–97.CrossRefGoogle Scholar
  38. Tian, Y., Peters-Lidard, C. D., Choudhury, B. J., & Garcia, M. (2007). Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. Journal of Hydrometeorology, 8(6), 1165–1183. Scholar
  39. Tian, Y., Peters-Lidard, C. D., Eylander, J. B., Joyce, R. J., Huffman, G. J., Adler, R. F., et al. (2009). Component analysis of errors in satellite-based precipitation estimates. Journal of Geophysical Research, 114(D24), D24101.CrossRefGoogle Scholar
  40. Wang, Y., Wan, Q., Meng, W., & Liao, F. (2011). Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China. Atmospheric Chemistry and Physics (ACP) and Discussions (ACPD). Scholar
  41. Wu, D., Tie, X., Li, C., Ying, Z., Kai-Hon Lau, A., Huang, J., et al. (2005). An extremely low visibility event over the Guangzhou region: a case study. Atmospheric Environment, 39(35), 6568–6577. Scholar
  42. Ying, M., Zhang, W., Yu, H., Lu, X., Feng, J., Fan, Y., et al. (2014). An overview of the China Meteorological Administration tropical cyclone database. Journal of Atmospheric and Oceanic Technology, 31(2), 287–301.CrossRefGoogle Scholar
  43. Yu, R., Li, J., Yuan, W., & Chen, H. (2010). Changes in characteristics of late-summer precipitation over eastern China in the past 40 years revealed by hourly precipitation data. Journal of Climate, 23(12), 3390–3396.CrossRefGoogle Scholar
  44. Yuan, W., Yu, R., Chen, H., Li, J., & Zhang, M. (2010). Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern China. Journal of Climate, 23(24), 6684–6695.CrossRefGoogle Scholar
  45. Zhang, Q., Liu, Q., & Wu, L. (2009). Tropical cyclone damages in China 1983–2006. Bulletin of the American Meteorological Society, 90(4), 489–495.CrossRefGoogle Scholar
  46. Zhou, T., Yu, R., Chen, H., Dai, A., & Pan, Y. (2008). Summer precipitation frequency, intensity, and diurnal cycle over China: a comparison of satellite data with rain gauge observations. Journal of Climate, 21(16), 3997–4010.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Anhui Meteorological Information CentreAnhui Institute of Meteorological ScienceHefeiChina
  2. 2.Key Laboratory for Mesoscale Severe Weather/MOE, School of Atmospheric SciencesNanjing UniversityNanjingChina

Personalised recommendations