Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 1, pp 279–295 | Cite as

The 1963 Vajont Landslide: A Numerical Investigation on the Sliding Surface Heterogeneity

  • Filippo ZaniboniEmail author
  • Stefano Tinti
Article
  • 50 Downloads

Abstract

The 1963 Vajont landslide is a key case in landslide literature, because it was catastrophic and because a lot of accurate data were collected before and after its occurrence. In this paper, the main focus is on the possible heterogeneity of the sliding surface involved by the landslide motion, which is reflected by a heterogeneous distribution of the dynamic basal friction coefficient μ. Assuming a given zonation of the sliding surface, our strategy was to apply a 2D Lagrangian model to compute the landslide motion and to find the values of μ for each zone, leading to the best agreement between the computed and the observed final deposit. Following some hints from the literature, we have explored heterogeneous configurations composed of up to four different zones, including also the homogeneous case, by means of a 2D numerical model (UBO-BLOCK2) that handles the landslide as a mesh of blocks and runs quickly enough to allow the computation of tens of thousands of simulations in a reasonable computing time. It is found that the four-zone zonation produces the best fit (or the least misfit), which is a strong hint that the gliding surface involved different geotechnical units.

Keywords

Vajont landslide Lagrangian approach numerical simulations friction coefficient misfit 

Notes

Acknowledgements

The authors are indebted to the reviewers, one anonymous and the other Dr. Rachid Omira, who contributed to the improvement and robustness of the manuscript.

References

  1. Alonso, E. E., & Pinyol, N. M. (2010). Criteria for rapid sliding I. A review of Vaiont case. Engineering Geology, 114(2010), 198–210.  https://doi.org/10.1016/j.enggeo.2010.04.018.CrossRefGoogle Scholar
  2. Argnani, A., Armigliato, A., Pagnoni, G., Zaniboni, F., Tinti, S., Bonazzi, & C. (2012). Active tectonics along the submarine slope of south-eastern Sicily and the source of the 11 January 1693 earthquake and tsunami. Natural Hazards and Earth System Sciences, 12, 1311–1319. http://www.nat-hazards-earth-syst-sci.net/12/1311/2012/,  https://doi.org/10.5194/nhess-12-1311-2012.
  3. Argnani, A., Tinti, S., Zaniboni, F., Pagnoni, G., Armigliato, A., Panetta, D., et al. (2011). The eastern slope of the southern Adriatic basin: a case study of submarine landslide characterization and tsunamigenic potential assessment. Marine Geophysical Researches, 2011(32), 299–311.  https://doi.org/10.1007/s11001-011-9131-3.CrossRefGoogle Scholar
  4. Bistacchi, A., Massironi, M., Superchi, L., Zorzi, L., Francese, R., Giorgi, M., Chistolini, F., & Genevois, R. (2013). A 3d geological model of the 1963 Vajont landslide. Italian Journal of Engineering Geology and Environment Book Series (6), © 2013 Sapienza Università Editrice.  https://doi.org/10.4408/ijege.2013-06.b-51.
  5. Caloi, P. (1966). L’evento del Vajont nei suoi aspetti geodinamici. Annali di Geofisica, XIX, 1–74 (in Italian).Google Scholar
  6. Carloni, G.C., & Mazzanti, R. (1964). Rilevamento geologico della frana del Vajont. Giornale di Geologia, Annali del Museo Geologico di Bologna, XXXII, 105–123 (in Italian).Google Scholar
  7. Cecinato, F., Zervos, A., & Veveakis, E. (2011). A thermo-mechanical model for the catastrophic collapse of large landslides. International Journal for Numerical and Analytical Methods in Geomechanics, 35, 1507–1535.  https://doi.org/10.1002/nag.963.CrossRefGoogle Scholar
  8. Ciabatti, M. (1964). La dinamica della frana del Vajont. Giornale di Geologia, Annali del Museo Geologico di Bologna, XXXII, 139–153 (in Italian).Google Scholar
  9. Crosta, G. B., Imposimato, S., & Roddeman, D. (2016). Landslide spreading, impulse water waves and modelling of the Vajont Rockslide. Rock Mechanics and Rock Engineering.  https://doi.org/10.1007/s00603-015-0769-z.Google Scholar
  10. Del Ventisette, C., Gigli, G., Bonini, M., Corti, G., Montanari, D., Santoro, S., et al. (2015). Insights from analogue modelling into the deformation mechanism of the Vaiont landslide. Geomorphology, 228, 52–59.  https://doi.org/10.1016/j.geomorph.2014.08.024.CrossRefGoogle Scholar
  11. Dykes A. P., & Bromhead, E. N. (2018a), The Vaiont landslide: re-assessment of the evidence leads to rejection of the consensus. Landslides.  https://doi.org/10.1007/s10346-018-0996-y.
  12. Dykes A. P., & Bromhead, E.N. (2018b), New, simplified and improved interpretation of the Vaiont landslide mechanics. Landslides.  https://doi.org/10.1007/s10346-018-0998-9.
  13. Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., et al. (2011). Low- to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research, 116, B09208.  https://doi.org/10.1029/2011JB008338.Google Scholar
  14. Genevois, R., & Ghirotti, M. (2005). The 1963 Vaiont landslide. Giornale di Geologia Applicata, 1, 41–52.  https://doi.org/10.1474/GGA.2005-01.0-05.0005.Google Scholar
  15. Hendron, A. J., & Patton, F.D. (1985). The Vajont slide, a geotechnical analysis based on new geological observations of the failure surface. Technical report GL85-5, US Army Corps of Engineers Waterways Experiment Station, Vicksburg, (2 volumes).Google Scholar
  16. Hungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32, 610–623.CrossRefGoogle Scholar
  17. Hutchinson, J. N. (1986). A sliding-consolidation model for flow slides. Canadian Geotechnical Journal, 23, 663–677.CrossRefGoogle Scholar
  18. Kilburn, C. R. J., & Petley, D. N. (2003). Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology, 54, 21–32.  https://doi.org/10.1016/S0169-555X(03)00052-7.CrossRefGoogle Scholar
  19. Lo Iacono, C., Gràcia, E., Zaniboni, F., Pagnoni, G., Tinti, S., Bartolomé, R., et al. (2012). Large, deepwater slope failures: Implications for landslide-generated tsunamis. Geology, 40(10), 931–934.  https://doi.org/10.1130/G33446.1.CrossRefGoogle Scholar
  20. Mantovani, F., & Vita-Finzi, C. (2003). Neotectonics of the Vajont dam site. Geomorphology, 54, 33–37.  https://doi.org/10.1016/S0169-555X(03)00053-9.CrossRefGoogle Scholar
  21. Paparo, M. A., Zaniboni, F., & Tinti S. (2013). The Vajont landslide, 9th October 1963: Limit equilibrium model for slope stability analysis through the Minimum Lithostatic Deviation method. Italian Journal of Engineering Geology and Environment Book Series (6), © 2013 Sapienza Università Editrice.  https://doi.org/10.4408/ijege.2013-06.b-56.
  22. Paronuzzi, P., & Bolla, A. (2012). The prehistoric Vajont rockslide: An updated geological model. Geomorphology, 169–170(2012), 165–191.  https://doi.org/10.1016/j.geomorph.2012.04.021.CrossRefGoogle Scholar
  23. Petronio, L., Boaga, J., & Cassiani, G. (2016). Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics. Journal of Applied Geophysics, 128, 58–67.  https://doi.org/10.1016/j.jappgeo.2016.03.012.CrossRefGoogle Scholar
  24. Pinyol, N. M., & Alonso, E. E. (2010). Thermo-hydro-mechanical and scale effects in Vaiont case. Engineering Geology, 114(2010), 211–227.  https://doi.org/10.1016/j.enggeo.2010.04.017.CrossRefGoogle Scholar
  25. Rossi, D., & Semenza, E. (1965). Carte geologiche del versante settentrionale del Monte Toc e zone limitrofe, prima e dopo il fenomeno di scivolamento del 9 ottobre 1963, scala 1:5000. Istituto di Geologia: Università di Ferrara, Ferrara.Google Scholar
  26. Selli, R., & Trevisan, L. (1964). Caratteri e interpretazioni della frana del Vajont. Giornale di Geologia, Annali del Museo Geologico di Bologna, XXXII, 7–68 (in Italian).Google Scholar
  27. Semenza, E., & Ghirotti, M. (2000). History of the 1963 Vajont slide: the importance of geological factors. Bulletin of Engineering Geology and the Environment, 59, 87–97.CrossRefGoogle Scholar
  28. Sitar, N., MacLaughlin, M. M., & Doolin, D. M. (2005). Influence of kinematics on landslide mobility and failure mode. Journal of Geotechnical and Geoenvironmental Engineering, 131(6), 716–728.CrossRefGoogle Scholar
  29. Superchi, L. (2012), The Vajont rockslide: new techniques and traditional methods to re-evaluate the catastrophic event. PhD Thesis, Padova University, Italy, pp 215.Google Scholar
  30. Tika, Th E, & Hutchinson, J. N. (1999). Ring shear tests on soil from the Vajont landslide slip surface. Geotechnique, 49, 59–74.CrossRefGoogle Scholar
  31. Tinti, S., Bortolucci, E., & Vannini, C. (1997). A block-based theoretical model suited to gravitational sliding. Natural Hazards, 16, 1–28.CrossRefGoogle Scholar
  32. Tinti, S., Pagnoni, G., & Zaniboni, F. (2006). The landslides and tsunamis of 30th December 2002 in Stromboli analysed through numerical simulations. Bulletin of Volcanology, 68, 462–479.CrossRefGoogle Scholar
  33. Tinti, S., Pagnoni, G., Zaniboni, F., & Bortolucci, E. (2003). Tsunami generation in Stromboli and impact on the south-east Tyrrhenian coasts. Natural Hazards and Earth Systems Sciences, 3, 299–309.CrossRefGoogle Scholar
  34. Vardoulakis, I. (2002). Dynamic thermo-poro-mechanical analysis of catastrophic landslides. Geotechnique, 52, 157–171.CrossRefGoogle Scholar
  35. Ward, S., & Day, S. (2011). The 1963 landslide and flood at Vajont reservoir Italy. A tsunami ball simulation. Italian Journal of Geosciences, 130, 16–26.  https://doi.org/10.3301/IJG.2010.21.Google Scholar
  36. Wolter, A., Stead, D., & Clauge, J. J. (2014). A morphologic characterisation of the 1963 Vajont Slide, Italy, using long-range terrestrial photogrammetry. Geomorphology, 206, 147–164.  https://doi.org/10.1016/j.geomorph.2013.10.006-.CrossRefGoogle Scholar
  37. Wolter, A., Stead, D., Ward, B. C., Clague, J. J., & Ghirotti, M. (2015). Engineering geomorphological characterisation of the Vajont Slide, Italy, and a new interpretation of the chronology and evolution of the landslide. Landslides.  https://doi.org/10.1007/s10346-015-0668-0.
  38. Zaniboni, F., Paparo, M. A., & Tinti, S. (2013). The 1963 Vajont landslide analysed through numerical modeling. Italian Journal of Engineering Geology and Environment Book Series (6), © 2013. Sapienza Università Editrice.  https://doi.org/10.4408/ijege.2013-06.b-60.
  39. Zaniboni, F., & Tinti, S. (2014). Numerical simulations of the 1963 Vajont landslide, Italy: Application of 1D Lagrangian modelling. Natural Hazards, 70, 567–592.  https://doi.org/10.1007/s11069-013-0828-2.CrossRefGoogle Scholar
  40. Zhao, T., Utili, S.,& Crosta, G. B. (2016). Rockslide and impulse wave modelling in the Vajont reservoir by DEM-CFD analyses. Rock Mechanics and Rock Engineering.  https://doi.org/10.1007/s00603-015-0731-0.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e AstronomiaAlma Mater Studiorum-Università di BolognaBolognaItaly

Personalised recommendations